Salbutamol transport and deposition in healthy cat airways under different breathing conditions and particle sizes

dc.contributor.authorFernández-Parra, Rocío
dc.contributor.authorPey, Pascaline
dc.contributor.authorReinero, Carol
dc.contributor.authorMalvè, Mauro
dc.contributor.departmentIngenieríaes_ES
dc.contributor.departmentIngeniaritzaeu
dc.date.accessioned2023-10-24T18:00:37Z
dc.date.available2023-10-24T18:00:37Z
dc.date.issued2023
dc.date.updated2023-10-24T17:39:35Z
dc.description.abstractSalbutamol is a bronchodilatator commonly used for the treatment of feline inflammatory lower airway disease, including asthma or acute bronchospasm. As in humans, a pressurized metered dose inhaler (pMDI) is used in conjunction with a spacer and a spherical mask to facilitate salbutamol administration. However, efficacy of inhalation therapy is influenced by different factors including the noncooperative character of cats. In this study, the goal was to use computational fluid dynamics (CFD) to analyze the impact of breathing patterns and salbutamol particle size on overall drug transport and deposition using a specific spherical mask and spacer designed for cats. A model incorporating three-dimensional cat airway geometry, a commercially available spherical mask, and a 10  cm spacer, was used for CFD analysis. Two peak inspiratory flows were tested: 30  mL/s and 126  mL/s. Simulations were performed with 30s breathing different inspiratory and expiratory times, respiratory frequencies and peaks. Droplet spray transport and deposition were simulated with different particle sizes typical of the drug delivery therapies (1, 5, 10, and 15  μm). The percentage of particle deposition into the device and upper airways decreased with increasing particle diameter during both flows imposed in this cat model. During increased mean ventilatory rate (MVR) conditions, most of the salbutamol was lost in the upper airways. And during decreased MVR conditions, most of the particles remained in suspension (still in hold-up) between the mask and the carina, indicating the need for more than 30  s to be transported. In both flows the percentage of particles traveling to the lung was low at 1.5%–2.3%. In conclusion, in contrast to what has been described in the human literature, the results from this feline model suggest that the percentage of particles deposited on the upper airway decreases with increasing particle diameter.en
dc.description.sponsorshipThis study is supported by grants PID2021-125731OB-C31 and PID2021-125731OB-C33 from the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033/ and FEDER (“A way to build Europe”).en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationFernández-Parra, R., Pey, P., Reinero, C., & Malvè, M. (2023). Salbutamol transport and deposition in healthy cat airways under different breathing conditions and particle sizes. Frontiers in Veterinary Science, 10, 1176757. https://doi.org/10.3389/fvets.2023.1176757en
dc.identifier.doi10.3389/fvets.2023.1176757
dc.identifier.issn2297-1769
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/46614
dc.language.isoengen
dc.publisherFrontiers Mediaen
dc.relation.ispartofFrontiers in Veterinary Science 2023, 10, 1176757en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//PID2021-125731OB-C31/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//PID2021-125731OB-C33/
dc.relation.publisherversionhttps://doi.org/10.3389/fvets.2023.1176757
dc.rights© 2023 Fernández-Parra, Pey, Reinero and Malvè. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBronchospasmen
dc.subjectComputational fluid dynamics (CFD)en
dc.subjectFelineen
dc.subjectInhalation therapyen
dc.subjectLower airway diseaseen
dc.titleSalbutamol transport and deposition in healthy cat airways under different breathing conditions and particle sizesen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationaa62429b-fef0-4a2c-9d96-43dbf7f63675
relation.isAuthorOfPublication.latestForDiscoveryaa62429b-fef0-4a2c-9d96-43dbf7f63675

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fernandez_SalbutamolTransport.pdf
Size:
841.6 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: