Publication: Analysis of the uncertainty in measurements of polymer pellets using microwave resonant sensors
Date
Authors
Director
Publisher
Project identifier
Impacto
Abstract
The analysis and evaluation of the uncertainty in microwave measurements of some polymer plastic materials in the form of small pellets is presented in this article. Two different resonant sensors, cavity and planar, operating around 2.45 GHz are used to measure the materials. The presented uncertainty analysis is based on the measured resonant parameters from the sensors and represents a statistical tool capable of generating relevant information such as an adequate number of tests, uncertainty levels, correlation coefficient, covariance matrix, and confidence ellipses, which can be highly useful in the analysis of pellet or grained materials using microwave methods, and for fast and accurate decisions involving materials evaluation. It will be shown that a number of 40 tests for each sample is adequate for a stable uncertainty, and due to the E-field distribution and interaction with the samples, the cavity sensor develops lower uncertainty in resonant frequency compared to the planar circuit, thus, it can be a more reliable sensor for polymer pellet measurements.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.