The uniqueness of unconditional basis of the 2-convexified Tsirelson space, revisited

dc.contributor.authorAlbiac Alesanco, Fernando José
dc.contributor.authorAnsorena, José L.
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
dc.date.accessioned2025-03-05T16:33:30Z
dc.date.available2025-03-05T16:33:30Z
dc.date.issued2024-10-13
dc.date.updated2025-03-05T15:08:04Z
dc.description.abstractOne of the hallmarks in the study of the classification of Banach spaces with a unique (normalized) unconditional basis was the unexpected result by Bourgain, Casazza, Lindenstrauss, and Tzafriri from their 1985 Memoir that the 2-convexified Tsirelson space T(2) had that property (up to equivalence and permutation). Indeed, on one hand, finding a “pathological” space (i.e., not built out as a direct sum of the only three classical sequence spaces with a unique unconditional basis) shattered the hopeful optimism of attaining a satisfactory description of all Banach spaces which enjoy that important structural feature. On the other hand it encouraged furthering a research topic that had received relatively little attention until then. After forty years, the advances on the subject have shed light onto the underlying patterns shared by those spaces with a unique unconditional bases belonging to the same class, which has led to reproving the original theorems with fewer technicalities. Our motivation in this note is to revisit the aforementioned result on the uniqueness of unconditional basis of T(2) from the current state-of-art of the subject and to fill in some details that we missed from the original proof.en
dc.description.sponsorshipThe authors acknowledge the support of the Spanish Ministry for Science and Innovation under Grant PID2022-138342NB-I00 for Functional Analysis Techniques in Approximation Theory and Applications. Open Access funding provided by Universidad Pública de Navarra.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationAlbiac, F., Ansorena, J. L. (2024) The uniqueness of unconditional basis of the 2-convexified Tsirelson space, revisited. Banach Journal of Mathematical Analysis, 18(4), 1-15. https://doi.org/10.1007/s43037-024-00386-2.
dc.identifier.doi10.1007/s43037-024-00386-2
dc.identifier.issn2662-2033
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/53672
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofBanach Journal of Mathematical Analysis, (2024) 18:79
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138342NB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1007/s43037-024-00386-2
dc.rights© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectUniqueness of unconditional basisen
dc.subjectBanach latticesen
dc.subjectTsirelson spaceen
dc.subjectSequence spacesen
dc.titleThe uniqueness of unconditional basis of the 2-convexified Tsirelson space, revisiteden
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication3a702006-6ba1-41ba-93bf-ea9fee1de239
relation.isAuthorOfPublication.latestForDiscovery3a702006-6ba1-41ba-93bf-ea9fee1de239

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Albiac_UniquenessUnconditional.pdf
Size:
464.42 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: