New measures for comparing matrices and their application to image processing

dc.contributor.authorSesma Sara, Mikel
dc.contributor.authorMiguel Turullols, Laura de
dc.contributor.authorPagola Barrio, Miguel
dc.contributor.authorBurusco Juandeaburre, Ana
dc.contributor.authorMesiar, Radko
dc.contributor.authorBustince Sola, Humberto
dc.contributor.departmentAutomatika eta Konputazioaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentAutomática y Computaciónes_ES
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2018-11-27T07:39:00Z
dc.date.available2020-09-01T23:00:10Z
dc.date.issued2018
dc.description.abstractIn this work we present the class of matrix resemblance functions, i.e., functions that measure the difference between two matrices. We present two construction methods and study the properties that matrix resemblance functions satisfy, which suggest that this class of functions is an appropriate tool for comparing images. Hence, we present a comparison method for grayscale images whose result is a new image, which enables to locate the areas where both images are equally similar or dissimilar. Additionally, we propose some applications in which this comparison method can be used, such as defect detection in industrial manufacturing processes and video motion detection and object tracking.en
dc.description.sponsorshipThis work is partially supported by the research services of Universidad Publica de Navarra and by the project TIN2016-77356-P (AEI/FEDER, UE). R. Mesiar is supported by Slovak grant APVV-14-0013, and by Czech Project LQ1602 “IT4Innovations excellence in science”.en
dc.embargo.lift2020-09-01
dc.embargo.terms2020-09-01
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1016/j.apm.2018.05.006
dc.identifier.issn0307-904X
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/31513
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofApplied mathematical modelling, vol. 61, september 2018, pp. 498-520en
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/TIN2016-77356/
dc.relation.publisherversionhttps://doi.org/10.1016/j.apm.2018.05.006
dc.rights© 2018 Elsevier Inc. The manuscript version is made available under the CC BY-NC-ND 4.0 licenseen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMatrix resemblance functionsen
dc.subjectRestricted equivalence functionsen
dc.subjectInclusion gradesen
dc.subjectFuzzy mathematical morphologyen
dc.subjectDefect detectionen
dc.subjectMotion detectionen
dc.titleNew measures for comparing matrices and their application to image processinges_ES
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication3a541442-8e82-49d5-903d-60e0aedbc1f6
relation.isAuthorOfPublicationb6673ff1-b94d-4852-be93-90b30a9c8555
relation.isAuthorOfPublicatione5ab14f5-4f2e-4000-a415-0a7c3b28ec78
relation.isAuthorOfPublication762af05e-a8db-4e66-8af5-ceb919853ed9
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery3a541442-8e82-49d5-903d-60e0aedbc1f6

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MRF preprint.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: