Publication:
Structure of the Lipschitz free p-spaces Fp(Zd) and Fp(Rd) for 0 < p ≤ 1

Date

2021

Authors

Ansorena, José L.
Cúth, Marek
Doucha, Michal

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/recolecta
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/recolecta

Abstract

Our aim in this article is to contribute to the theory of Lipschitz free p-spaces for 0 < p ≤ 1 over the Euclidean spaces Rd and Zd. To that end, on one hand we show that Fp(Rd) admits a Schauder basis for every p ∈ 2 (0, 1], thus generalizing the corresponding result for the case p = 1 by H_ajek and Perneck_a [20, Theorem 3.1] and answering in the positive a question that was raised in [3]. Explicit formulas for the bases of both Fp(Rd) and its isomorphic space Fp([0, 1]d) are given. On the other hand we show that the well-known fact that F(Z) is isomorphic to l1 does not extend to the case when p < 1, that is, Fp(Z) is not isomorphic to lp when 0 < p < 1.

Description

Keywords

Isomorphic theory of Banach spaces, Lp-space, Lipschitz free p-space, Lipschitz free space, Quasi-Banach space, Schauder basis

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© Universitat de Barcelona 2021

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.