Evaluation of surface microtopography engineered by direct laser interference for bacterial anti-biofouling

dc.contributor.authorValle Turrillas, Jaione
dc.contributor.authorBurgui Erice, Saioa
dc.contributor.authorLangheinrich, Denise
dc.contributor.authorGil Puig, Carmen
dc.contributor.authorSolano Goñi, Cristina
dc.contributor.authorToledo Arana, Alejandro
dc.contributor.authorHelbig, Ralf
dc.contributor.authorLasagni, Andrés
dc.contributor.authorLasa Uzcudun, Íñigo
dc.contributor.departmentIdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutuaes_ES
dc.contributor.funderGobierno de Navarra / Nafarroako Gobernua: IIQ14066.RI1es
dc.date.accessioned2016-11-04T15:00:15Z
dc.date.available2016-11-04T15:00:15Z
dc.date.issued2015
dc.descriptionEsta es la versión no revisada del artículo: Valle, J., Burgui, S., Langheinrich, D., Gil, C., Solano, C., Toledo-Arana, A., et al. (2015). Evaluation of Surface Microtopography Engineered by Direct Laser Interference for Bacterial Anti-Biofouling. Macromolecular Bioscience, 15(8), 1060–1069. Se puede consultar la versión publicada en http://doi.org/10.1002/mabi.201500107es_ES
dc.description.abstractBiofilm formation by bacterial pathogens on the surface of medical and industrial settings is a 25 serious health problem. Modification of the biomaterial surface topography is a promising 26 strategy to prevent bacterial attachment and biofilm development. However, fabrication of 27 functional biomaterials at large scale with periodic network-topology is still problematic. In this 28 study, we use direct laser interference (DLIP), an easily scalable process, to modify polystyrene 29 surface (PS) topography at sub-micrometer scale. The resulting structure surfaces were 30 interrogated for their capacity to prevent adhesion and biofilm formation of the major human 31 pathogen Staphylococcus aureus. The results revealed that three-dimensional micrometer 32 periodic structures on PS have a profound impact on bacterial adhesion capacity. Thus, line- 33 and pillar-like topographical patterns enhanced S. aureus adhesion, whereas complex lamella 34 microtopography reduced S. aureus adhesion both in static and continuous flow culture 35 conditions. Interestingly, lamella-like textured surfaces retained the capacity to inhibit S. aureus 36 adhesion both when the surface is coated with human serum proteins in vitro and when the 37 material is implanted subcutaneously in a foreign-body associated infection model. Our results 38 establish that the DLIP technology can be used to functionalize polymeric surfaces for the 39 inhibition of bacterial adhesion to surfaces.en
dc.description.sponsorshipJ. Valle was supported by Spanish Ministry of Science and Innovation “Ramón y Cajal” 369 contract. This research was supported by grants AGL2011-23954 and BIO2011-30503-C02-02 370 from the Spanish Ministry of Economy and Competitivity and IIQ14066.RI1 from Innovation 371 Department of the Government of Navarra.en
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/22611
dc.language.isoengen
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/6PN/AGL2011-23954/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//BIO2011-30503-C02-02/ES/
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectBacterial adhesionen
dc.subjectBiofilmsen
dc.subjectStaphylococcus aureusen
dc.subjectDirect laser interferenceen
dc.titleEvaluation of surface microtopography engineered by direct laser interference for bacterial anti-biofoulingen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/submittedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication022e51f1-528f-49d1-901a-5a76313639df
relation.isAuthorOfPublication37fcbeeb-a960-4b98-9677-3d84608f2be1
relation.isAuthorOfPublication7fcbe5e9-956a-431c-95c6-1c988099207c
relation.isAuthorOfPublicationb6a392a0-c0e5-4c6f-9086-6fa4291d0856
relation.isAuthorOfPublication777af947-83d1-4cb7-b485-b0430d3e28be
relation.isAuthorOfPublicationc654d104-1ae2-41cf-9215-4b4bed3e5ea6
relation.isAuthorOfPublication.latestForDiscovery022e51f1-528f-49d1-901a-5a76313639df

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MBS-JOURNAL-S-15-00130.pdf
Size:
3.85 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: