Thermoelectric self-cooling for power electronics: increasing the cooling power

dc.contributor.authorMartínez Echeverri, Álvaro
dc.contributor.authorAstrain Ulibarrena, David
dc.contributor.authorAranguren Garacochea, Patricia
dc.contributor.departmentIngeniería Mecánica, Energética y de Materialeses_ES
dc.contributor.departmentMekanika, Energetika eta Materialen Ingeniaritzaeu
dc.date.accessioned2016-10-27T09:15:29Z
dc.date.available2018-10-01T23:00:11Z
dc.date.issued2016
dc.description.abstractThermoelectric self-cooling was firstly conceived to increase, without electricity consumption, the cooling power of passive cooling systems. This paper studies the combination of heat pipe exchangers and thermoelectric self-cooling, and demonstrates its applicability to the cooling of power electronics. Experimental tests indicate that source-to-ambient thermal resistance reduces by around 30% when thermoelectric self-cooling system is installed, compared to that of the heat pipe exchanger under natural convection. Neither additional electric power nor cooling fluids are required. This thermal resistance reaches 0.346 K/W for a heat flux of 24.1 kW/m2, being one order of magnitude lower than that obtained in previous designs. In addition, the system adapts to the cooling demand, reducing this thermal resistance for increasing heat. Simulation tests have indicated that simple system modifications allow relevant improvements in the cooling power. Replacement of a thermoelectric module with a thermal bridge leads to 33.54 kW/m2 of top cooling power. Likewise, thermoelectric modules with shorter legs and higher number of pairs lead to a top cooling power of 44.17 kW/m2. These results demonstrate the applicability of thermoelectric self-cooling to power electronics.en
dc.description.sponsorshipThe authors would like to thank the Spanish Ministry of Economy and Competitiveness (DPI2014-53158-R) and FEDER Funds (European Union) for supporting this work.en
dc.embargo.lift2018-10-01
dc.embargo.terms2018-10-01
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1016/j.energy.2016.06.007
dc.identifier.issn0360-5442 (Print)
dc.identifier.issn1873-6785 (Electronic)
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/22502
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofEnergy 112 (2016) 1-7en
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//DPI2014-53158-R/ES/
dc.relation.publisherversionhttps://dx.doi.org/10.1016/j.energy.2016.06.007
dc.rights© 2016 Elsevier B.V. The manuscript version is made available under the CC BY-NC-ND 4.0 license.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectThermoelectric self-coolingen
dc.subjectPower electronicsen
dc.subjectSeebeck effecten
dc.subjectHeat pipe exchangeren
dc.titleThermoelectric self-cooling for power electronics: increasing the cooling poweren
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication1f41d3ad-c07b-4475-a762-109fe7c612d2
relation.isAuthorOfPublication5f626878-b8c6-4403-97ee-e14738ea30e2
relation.isAuthorOfPublicationb28d5c01-2691-468a-a076-5b6bb74ff88a
relation.isAuthorOfPublication.latestForDiscovery1f41d3ad-c07b-4475-a762-109fe7c612d2

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PostprintR3.pdf
Size:
328.19 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: