Sensitivity optimization of a microstructured optical fiber ammonia gas sensor by means of tuning the thickness of a metal oxide nano-coating

dc.contributor.authorLópez Torres, Diego
dc.contributor.authorLópez Aldaba, Aitor
dc.contributor.authorElosúa Aguado, César
dc.contributor.authorAuguste, Jean-Louis
dc.contributor.authorJamier, Raphael
dc.contributor.authorRoy, Philippe
dc.contributor.authorLópez-Amo Sáinz, Manuel
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2021-04-23T08:36:24Z
dc.date.available2021-04-23T08:36:24Z
dc.date.issued2019
dc.description.abstractIn this paper, the influence of the thickness of metallic-oxide coatings, ITO, and SnO2 on the sensitivity of a microstructured optical fiber Fabry–Pérot (FP) has been studied with the aim of developing ammonia gas fiber optic sensors. Also, the distribution of the optical power that can be coupled to the metallic-oxide sensing films is investigated in order to understand how the sensor’s sensitivity can be improved; the thickness of the coatings plays a relevant role on the sensitivity and response time. Films with thicknesses between 200 and 850 nm were experimentally examined resulting in an optimal thickness of 625 nm for a SnO2 film. The behavior of the sensors toward different concentrations of ammonia gas from 10 to 130 ppm was analyzed by measuring the phase shifts of the reflected signal using the fast Fourier transform of its optical spectrum. The registered response/recovery times of this sensor are below 90 s.en
dc.description.sponsorshipThis work was supported in part by the Ministerio de Economía y Ciencia (MINECO) of Spain within projects under Grant TEC2016-79367-C2-2-R and Grant TEC2016-76021-C2-1-R, in part by the FEDER funds from the European Union, and in part by the University Public of Navarre Program Ph.D grantsen
dc.format.extent11 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1109/JSEN.2019.2901361
dc.identifier.issn1558-1748
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/39589
dc.language.isoengen
dc.publisherIEEEen
dc.relation.ispartofIEEE Sensors Journal, vol. 19, no. 13, July 1, 2019en
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/TEC2016-76021/
dc.relation.publisherversionhttps://doi.org/10.1109/JSEN.2019.2901361en
dc.rights© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectMicrostructured optical fiberen
dc.subjectFabry-Pérot interferometeren
dc.subjectAmmonia gasen
dc.subjectFast Fourier transformen
dc.subjectMetallic-oxidesen
dc.subjectThicknessen
dc.titleSensitivity optimization of a microstructured optical fiber ammonia gas sensor by means of tuning the thickness of a metal oxide nano-coatingen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication6d2c893c-becd-4b38-8cdc-382158964911
relation.isAuthorOfPublicationd789c4a3-bcf7-4ff2-9859-026cbafa1e34
relation.isAuthorOfPublication15c04d09-51b2-4cb6-841f-c775768039f7
relation.isAuthorOfPublication265f9852-fc76-4fec-92fd-dc27f4daddc0
relation.isAuthorOfPublication.latestForDiscovery6d2c893c-becd-4b38-8cdc-382158964911

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lopez_SensitivityOptimization.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: