Gated local adaptive binarization using supervised learning

dc.contributor.authorFumanal Idocin, Javier
dc.contributor.authorUriarte Barragán, Juan
dc.contributor.authorOsa Hernández, Borja de la
dc.contributor.authorBardozzo, Francesco
dc.contributor.authorFernández Fernández, Francisco Javier
dc.contributor.authorBustince Sola, Humberto
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2022-03-10T08:00:00Z
dc.date.available2022-03-10T08:00:00Z
dc.date.issued2021
dc.description.abstractImage thresholding is one of the most popular problems in image processing. However, changes inlightning and contrast in an image can cause trouble for the existing algorithms that use a global threshold for all the image. A solution for this problem is the adaptive thresholding, in which an image canhave different thresholds for different parts of the image. Yet, the problem of choosing the most suitable threshold for each region of the image is still open. In this paper we present the Gated Local Adaptive Binarization algorithm, in which we choose the most appropriate threshold for each region of the image using a logistic regression. Our results show that this algorithm can effectively learn the most appropriate threshold in each situation, and beats other adaptive binarization solutions for a standard dataset in the literature.en
dc.format.extent7 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.issn1613-0073
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/42489
dc.language.isoengen
dc.publisherCEUR Workshop Proceedings (CEUR-WS.org)en
dc.relation.ispartofWILF’21: The 13th International Workshop on Fuzzy Logic and Applications, Dec. 20–22, 2021, Vietri sul Mare, Italyen
dc.rights© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectFuzzy logicen
dc.subjectImage thresholdingen
dc.subjectImage processingen
dc.subjectAggregation functionsen
dc.titleGated local adaptive binarization using supervised learningen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication5193d488-fd4e-4556-88ca-ba5116412a36
relation.isAuthorOfPublication44a1efc3-41b2-4fcb-9f12-699b6926bcf2
relation.isAuthorOfPublication741321a5-40af-41aa-bacb-5da283dd18ab
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery5193d488-fd4e-4556-88ca-ba5116412a36

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fumanal_GatedLocal.pdf
Size:
907.98 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: