Gated local adaptive binarization using supervised learning
dc.contributor.author | Fumanal Idocin, Javier | |
dc.contributor.author | Uriarte Barragán, Juan | |
dc.contributor.author | Osa Hernández, Borja de la | |
dc.contributor.author | Bardozzo, Francesco | |
dc.contributor.author | Fernández Fernández, Francisco Javier | |
dc.contributor.author | Bustince Sola, Humberto | |
dc.contributor.department | Estadística, Informática y Matemáticas | es_ES |
dc.contributor.department | Estatistika, Informatika eta Matematika | eu |
dc.date.accessioned | 2022-03-10T08:00:00Z | |
dc.date.available | 2022-03-10T08:00:00Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Image thresholding is one of the most popular problems in image processing. However, changes inlightning and contrast in an image can cause trouble for the existing algorithms that use a global threshold for all the image. A solution for this problem is the adaptive thresholding, in which an image canhave different thresholds for different parts of the image. Yet, the problem of choosing the most suitable threshold for each region of the image is still open. In this paper we present the Gated Local Adaptive Binarization algorithm, in which we choose the most appropriate threshold for each region of the image using a logistic regression. Our results show that this algorithm can effectively learn the most appropriate threshold in each situation, and beats other adaptive binarization solutions for a standard dataset in the literature. | en |
dc.format.extent | 7 p. | |
dc.format.mimetype | application/pdf | en |
dc.identifier.issn | 1613-0073 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/42489 | |
dc.language.iso | eng | en |
dc.publisher | CEUR Workshop Proceedings (CEUR-WS.org) | en |
dc.relation.ispartof | WILF’21: The 13th International Workshop on Fuzzy Logic and Applications, Dec. 20–22, 2021, Vietri sul Mare, Italy | en |
dc.rights | © 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Fuzzy logic | en |
dc.subject | Image thresholding | en |
dc.subject | Image processing | en |
dc.subject | Aggregation functions | en |
dc.title | Gated local adaptive binarization using supervised learning | en |
dc.type | info:eu-repo/semantics/conferenceObject | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5193d488-fd4e-4556-88ca-ba5116412a36 | |
relation.isAuthorOfPublication | 44a1efc3-41b2-4fcb-9f12-699b6926bcf2 | |
relation.isAuthorOfPublication | 741321a5-40af-41aa-bacb-5da283dd18ab | |
relation.isAuthorOfPublication | 1bdd7a0e-704f-48e5-8d27-4486444f82c9 | |
relation.isAuthorOfPublication.latestForDiscovery | 5193d488-fd4e-4556-88ca-ba5116412a36 |