Publication:
Periodic solutions, KAM tori and bifurcations in a cosmology-inspired potential

Date

2019

Authors

Director

Publisher

IOP Publishing
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

MICINN//MTM2011-28227-C02-01/ES/recolecta
MINECO//MTM2014-59433-C2-1-P/ES/recolecta
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-88137-C2-1-P/ES/recolecta

Abstract

A family of perturbed Hamiltonians H = 1/2 (x^2 + X^2) − 1/2 (y^2 + Y^2)+1/2 (z^2 + Z^2) + 2[ (x^4 + y^4 + z^4) + (x^2 y^2 + x^2 z^2 + y^2 z^2)] in 1: −1:1 resonance depending on two real parameters is considered. We show the existence and stability of periodic solutions using reduction and averaging. In fact, there are at most thirteen families for every energy level h < 0 and at most twenty six families for every h > 0. The different types of periodic solutions for every nonzero energy level, as well as their bifurcations, are characterised in terms of the parameters. The linear stability of each family of periodic solutions, together with the determination of KAM 3-tori encasing some of the linearly stable periodic solutions is proved. Critical Hamiltonian bifurcations on the reduced space are characterised. We find important differences with respect to the dynamics of the 1:1:1 resonance with the same perturbation as the one given here. We end up with an intuitive interpretation of the results from a cosmological viewpoint.

Description

This is a peer-reviewed, un-copyedited version of an article published in Nonlinearity. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6544/ab1bc6.

Keywords

Resonant Hamiltonians, Friedmann–Lemaître–Robertson–Walker model, Normalisation and reduction, Hamiltonian Hopf bifurcation, KAM tori, Cosmological Hamiltonian, Reduced space and invariants

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2019 IOP Publishing Ltd & London Mathematical Society

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.