Extension of Delaunay normalisation for arbitrary powers of the radial distance

Date

2025-01-01

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-140469NB-C21/ES/ recolecta
Impacto
OpenAlexGoogle Scholar
No disponible en Scopus

Abstract

In the framework of perturbed Keplerian systems we deal with the Delaunay normalisation of a wide class of perturbations such that the radial distance is raised to an arbitrary real number ϒ. The averaged function is expressed in terms of the Gauss hypergeometric function 2F1 whereas the associated generating function is the so called Appell hypergeometric function F1. The Gauss hypergeometric function related to the average depends on the eccentricity, e, whereas the Appell function depends additionally on the eccentric anomaly, E, and both special functions are properly defined and evaluated for all e Є [0,1) and E Є [-ꙥ ꙥ]. We analyse when the functions we determine can be extended to e=1. When the exponent of the radial distance is an integer, the usual values of the averaged and generating functions are recovered.

Description

Keywords

Averaged Hamiltonian, Closed form expressions, Gauss and Appell hypergeometric functions, Generating function, Normalisation of Delaunay, Perturbed Keplerian Hamiltonians

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

item.page.cita

Lanchares, E., Palacián, J. F. (2025). Extension of Delaunay normalisation for arbitrary powers of the radial distance. Communications in Nonlinear Science and Numerical Simulation, 140, 1-11. https://doi.org/10.1016/j.cnsns.2024.108322.

item.page.rights

© 2024 The Authors. This is an open access article under the CC BY-NC license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.