Publication:
Optimized strong stability preserving IMEX Runge-Kutta methods

dc.contributor.authorHigueras Sanz, Inmaculada
dc.contributor.authorHappenhofer, Natalie
dc.contributor.authorKoch, Othmar
dc.contributor.authorKupka, Friedrich
dc.contributor.departmentIngeniería Matemática e Informáticaes_ES
dc.contributor.departmentMatematika eta Informatika Ingeniaritzaeu
dc.date.accessioned2015-01-22T13:31:57Z
dc.date.available2015-01-22T13:31:57Z
dc.date.issued2014
dc.descriptionEsta es la versión no revisada del artículo: Inmaculada Higueras, Natalie Happenhofer, Othmar Koch, and Friedrich Kupka. 2014. Optimized strong stability preserving IMEX Runge-Kutta methods. J. Comput. Appl. Math. 272 (December 2014), 116-140. Se puede consultar la versión final en https://doi.org/10.1016/j.cam.2014.05.011es_ES
dc.description.abstractWe construct and analyze robust strong stability preserving IMplicit-EXplicit Runge-Kutta (IMEX RK) methods for models of flow with diffusion as they appear in astrophysics and in many other fields where equations with similar structure arise. It turns out that besides the optimization of the region of absolute monotonicity, some other properties of the methods are crucial for the success of such simulations. In particular, the models in our focus dictate to also take into account the step size limits associated with dissipativity, positivity and the stiff parabolic terms which represent transport by diffusion, the uniform convergence with respect to different stiffness properties of those same terms, etc. Furthermore, in the literature, some other properties, like the inclusion of a part of the imaginary axis in the stability region, have been argued to be relevant. In this paper, we construct several new IMEX RK methods which differ from each other by taking various or even all of these constraints simultaneously into account. It is demonstrated for some simple examples as well as for the problem of double-diffusive convection, that the newly constructed schemes provide a significant computational advantage over other methods from the literature. Due to their accumulation of different stability properties, the optimized IMEX RK methods obtained in this paper are robust schemes that may also be useful for general models which involve the solution of advection-diffusion equations, or other transport equations with similar stability requirements.en
dc.description.sponsorshipInmaculada Higueras was supported by the Ministerio de Ciencia e Innovación, project MTM2011-23203es_ES
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/15589
dc.language.isoengen
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//MTM2011-23203/ES/en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectRunge-Kuttaen
dc.subjectImplicit-expliciten
dc.subjectStrong stability preservingen
dc.subjectTotal variation diminishingen
dc.subjectIMEXen
dc.subjectSSPen
dc.subjectTVDen
dc.subjectNumerical methodsen
dc.subjectHydrodynamicsen
dc.subjectDouble-diffusive convectionen
dc.subjectStellar convectionen
dc.subjectPulsationen
dc.titleOptimized strong stability preserving IMEX Runge-Kutta methodsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versionVersión enviada / Bidali den bertsioaes
dc.type.versioninfo:eu-repo/semantics/submittedVersionen
dspace.entity.typePublication
relation.isAuthorOfPublication2bbd2efb-9302-4135-804e-38cb641598c7
relation.isAuthorOfPublication.latestForDiscovery2bbd2efb-9302-4135-804e-38cb641598c7

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OptSSPIMEXRK2014A.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: