Making data fair through optimal trimmed matching

dc.contributor.authorInouzhe, Hristo
dc.contributor.authorGordaliza Pastor, Paula
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2024-10-11T08:47:36Z
dc.date.available2024-10-11T08:47:36Z
dc.date.issued2022-08-25
dc.date.updated2024-10-11T08:45:27Z
dc.description.abstractAlgorithmic fairness is one of the main concerns of today's scientific society due to the generalization of predictive algorithms in all aspects of human life. The aim of this work is to check if there is group bias in the response variable Y with respect to a sensitive information S present in the data. However, not all individuals in S are comparable, and some differences in the target Y may arise from genuine differences in the data. We propose to eliminate such cases by trimming an proportion of the input data as a pre-processing step to any further learning mechanism in order to obtain the two closest possible marginal distributions (with respect to S). On this population that is ¿similar enough¿ we can check for discrimination, in the sense of Demographic Parity. We solve a trimmed matching problem subject to fairness constraints that is a linear program that can be addressed with well-known techniques. We present some successful results of application to synthetic and real data.en
dc.description.sponsorshipThis research was funded by the Basque Government through the BERC 2022-2025 program and Elkartek project 3KIA (KK-2020/00049), and by the Spanish Ministry of Science, Innovation, and Universities (BCAM Severo Ochoa accreditation SEV-2017-0718).
dc.format.mimetypeapplication/pdfen
dc.identifier.citationGordaliza, P., Inouzhe, H. (2023) Making data fair through optimal trimmed matching. In García-Escudero, L. A., Gordaliza, A., Mayo, A., Lubiano-Gomez, M. A., Gil, M. A., Grzegorzewski, P., Hryniewic O. (Eds.), Building bridges between soft and statistical methodologies for data science: International Conference on Soft Methods in Probability and Statistics (pp. 194-199). Springer. https://doi.org/10.1007/978-3-031-15509-3_26.
dc.identifier.doi10.1007/978-3-031-15509-3_26
dc.identifier.isbn978-3-031-15508-6
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/52189
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofGarcía-Escudero, L. A.; Gordaliza, A.; Mayo, A.; Lubiano-Gomez, M. A.; Gil, M. A.; Grzegorzewski, P.; Hryniewic, O. (Eds.). Building bridges between soft and statistical methodologies for data science: International Conference on Soft Methods in Probability and Statistics. Cham: Springer; 2023. p. 194-199 978-3-031-15508-6
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-031-15509-3_26
dc.rights© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectFair dataen
dc.subjectTrimmed matchingen
dc.subjectAlgorithmic fairnessen
dc.subjectFair learningen
dc.titleMaking data fair through optimal trimmed matchingen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationd5bda28d-00d2-4d45-b4db-f7951b9c5b4a
relation.isAuthorOfPublication.latestForDiscoveryd5bda28d-00d2-4d45-b4db-f7951b9c5b4a

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gordaliza_MakingData.pdf
Size:
287.89 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: