Publication:
A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media

Date

2006

Authors

Sayas, Francisco Javier

Director

Publisher

EDP Sciences
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

Abstract

This paper proposes and analyzes a BEM-FEM scheme to approximate a time-harmonic diffusion problem in the plane with non-constant coefficients in a bounded area. The model is set as a Helmholtz transmission problem with adsorption and with non-constant coefficients in a bounded domain. We reformulate the problem as a four-field system. For the temperature and the heat flux we use piecewise constant functions and lowest order Raviart-Thomas elements associated to a triangulation approximating the bounded domain. For the boundary unknowns we take spaces of periodic splines. We show how to transmit information from the approximate boundary to the exact one in an efficient way and prove well-posedness of the Galerkin method. Error estimates are provided and experimentally corroborated at the end of the work.

Description

Keywords

Scattering of thermal waves, Non-hommogeneous media, Helmholtz transmission problem, BEM-FEM coupling

Department

Ingeniería Matemática e Informática / Matematika eta Informatika Ingeniaritza

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

©EDP Sciences, SMAI 2007

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.