Publication: A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media
Date
Authors
Director
Publisher
Project identifier
Abstract
This paper proposes and analyzes a BEM-FEM scheme to approximate a time-harmonic diffusion problem in the plane with non-constant coefficients in a bounded area. The model is set as a Helmholtz transmission problem with adsorption and with non-constant coefficients in a bounded domain. We reformulate the problem as a four-field system. For the temperature and the heat flux we use piecewise constant functions and lowest order Raviart-Thomas elements associated to a triangulation approximating the bounded domain. For the boundary unknowns we take spaces of periodic splines. We show how to transmit information from the approximate boundary to the exact one in an efficient way and prove well-posedness of the Galerkin method. Error estimates are provided and experimentally corroborated at the end of the work.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
©EDP Sciences, SMAI 2007
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.