Publication: A note on the asymptotic expansion of the Lerch’s transcendent
dc.contributor.author | Cai, Xing Shi | |
dc.contributor.author | López García, José Luis | |
dc.contributor.department | Ingeniería Matemática e Informática | es_ES |
dc.contributor.department | Matematika eta Informatika Ingeniaritza | eu |
dc.date.accessioned | 2019-06-20T08:02:55Z | |
dc.date.available | 2019-09-10T23:00:14Z | |
dc.date.issued | 2018 | |
dc.description | This is an accepted manuscript of an article published by Taylor & Francis in Integral Transforms and Special Functions on 10 Jun 2019, available online: https://doi.org/10.1080/10652469.2019.1627530 | en |
dc.description.abstract | In Ferreira and López [Asymptotic expansions of the Hurwitz–Lerch zeta function. J Math Anal Appl. 2004;298(1):210–224], the authors derived an asymptotic expansion of the Lerch's transcendent Φ(z,s,a) for large |a|, valid for Ra>0, Rs>0 and z∈C∖[1,∞). In this paper, we study the special case z≥1 not covered in Ferreira and López [Asymptotic expansions of the Hurwitz–Lerch zeta function. J Math Anal Appl. 2004;298(1):210–224], deriving a complete asymptotic expansion of the Lerch's transcendent Φ(z,s,a) for z>1 and Rs>0 as Ra goes to infinity. We also show that when a is a positive integer, this expansion is convergent for Rz≥1. As a corollary, we get a full asymptotic expansion for the sum ∑mn=1zn/ns for fixed z>1 as m→∞. Some numerical results show the accuracy of the approximation. | en |
dc.description.sponsorship | This work is supported by the Knut and Alice Wallenberg Foundation and the Ministerio de Economía y Competitividad of the spanish government (MTM2017-83490-P). | en |
dc.embargo.lift | 2019-09-10 | |
dc.embargo.terms | 2019-09-10 | |
dc.format.extent | 12 p. | |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | 10.1080/10652469.2019.1627530 | |
dc.identifier.issn | 1065-2469 (Print) | |
dc.identifier.issn | 1476-8291 (Electronic) | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/33465 | |
dc.language.iso | eng | en |
dc.publisher | Taylor & Francis | en |
dc.relation.ispartof | Integral Transforms and Special Functions 2019, vol. 30, no. 10, 844–855 | en |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/ | en |
dc.relation.publisherversion | https://doi.org/10.1080/10652469.2019.1627530 | |
dc.rights | © 2019 Informa UK Limited, trading as Taylor & Francis Group | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.subject | Hurwitz–Lerch zeta function | en |
dc.subject | Asymptotic expansion | en |
dc.subject | Special functions | en |
dc.title | A note on the asymptotic expansion of the Lerch’s transcendent | en |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | en |
dc.type.version | Versión aceptada / Onetsi den bertsioa | es |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e6cd33c5-6d5e-455c-b8da-32a9702e16c8 | |
relation.isAuthorOfPublication.latestForDiscovery | e6cd33c5-6d5e-455c-b8da-32a9702e16c8 |