Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting

dc.contributor.authorArcos Avilés, Diego
dc.contributor.authorPascual Miqueleiz, Julio María
dc.contributor.authorGuinjoan Gispert, Francesc
dc.contributor.authorMarroyo Palomo, Luis
dc.contributor.authorSanchis Gúrpide, Pablo
dc.contributor.departmentIngeniería Eléctrica y Electrónicaes_ES
dc.contributor.departmentIngeniaritza Elektrikoa eta Elektronikoaeu
dc.date.accessioned2020-10-14T10:56:00Z
dc.date.available2020-10-14T10:56:00Z
dc.date.issued2017
dc.description.abstractThis paper presents the design of an energy management strategy based on a low complexity Fuzzy Logic Control (FLC) for grid power profile smoothing of a residential grid-connected microgrid including Renewable Energy Sources (RES) and battery Energy Storage System (ESS). The proposed energy management strategy uses generation and demand forecasting to anticipate the future behavior of the microgrid. Accordingly to the microgrid power forecast error and the Battery State-of-Charge (SOC) the proposed strategy performs the suitable control of the grid power. A simulation comparison with previous energy management strategies highlights the advantages of the proposed work minimizing fluctuations and power peaks in the power profile exchanged with the grid while keeping the energy stored in the battery between secure limits. Finally, the experimental validation in a real residential microgrid implemented at Public University of Navarre (UPNA, Spain) demonstrates the proper operation of the proposed strategy achieving a smooth grid power profile and a battery SOC center close to the 75% of the rated battery capacity.en
dc.description.sponsorshipThis work is part of the project 2016-PIC-044 from the Universidad de las Fuerzas Armadas ESPE. This work was partially supported by the Spanish State Research Agency (AEI) and FEDER-UE under grants: DPI2015-67292, DPI2013-41224-P, DPI2013-42853-R and DPI2016-80641-R.en
dc.format.extent25 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1016/j.apenergy.2017.07.123
dc.identifier.issn0306-2619
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/38382
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofApplied Energy, 2017, 205, 69-84en
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//DPI2015-67292-R/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//DPI2013-41224-P/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//DPI2013-42853-R/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/DPI2016-80641-R/
dc.relation.publisherversionhttps://doi.org/10.1016/j.apenergy.2017.07.123
dc.rights© 2017 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDistributed power generationen
dc.subjectEnergy managementen
dc.subjectPower forecastingen
dc.subjectFuzzy controlen
dc.subjectMicrogriden
dc.subjectPower smoothingen
dc.titleLow complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecastingen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicatione6f2ddb7-3782-4571-91e6-1fd56d40f23e
relation.isAuthorOfPublicationa68eb3e8-cf0e-4b2b-952b-d419a42a5f8c
relation.isAuthorOfPublicationeb28ad46-ad2e-4415-a048-6c3f2fe48916
relation.isAuthorOfPublication.latestForDiscoverye6f2ddb7-3782-4571-91e6-1fd56d40f23e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
14_Arcos_LowComplexity.pdf
Size:
818.06 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: