On a total order on the set of Z-numbers based on discrete fuzzy numbers

dc.contributor.authorMir Fuentes, Arnau
dc.contributor.authorMiguel Turullols, Laura de
dc.contributor.authorMassanet, Sebastia
dc.contributor.authorMir Torres, Arnau
dc.contributor.authorRiera, Juan Vicente
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2024-10-22T15:38:58Z
dc.date.available2024-10-22T15:38:58Z
dc.date.issued2024-07-02
dc.date.updated2024-10-22T15:17:48Z
dc.description.abstractZ-numbers were introduced by Zadeh in 2011 as a pair of fuzzy numbers (A, B), where A is interpreted as a fuzzy restriction on the values of a variable, while B is interpreted as a measure of certainty or sureness of A. From the initial proposal, several other approaches have been introduced in order to reduce the computational cost of the involved operations. One of such approaches is called discrete Z-numbers where A and B are modelled as discrete fuzzy numbers. In this paper, the construction of total orders on the set of discrete Z-numbers is investigated for the first time. Specifically, the total order is designed for discrete Z-numbers where the second component has membership values belonging to a finite and prefixed set of values. The method relies on solid and coherent linguistic criteria and several linguistic properties are analyzed. The order involves the transformation of the first components of the discrete Z-numbers by using the credibility of the second components in the sense that a lower credibility enlarges in a greater extent the uncertainty of the first component. Then a total order on the set of discrete fuzzy numbers is applied. Finally, a practical example on how to order discrete Z-numbers is presented and a comparison with other ranking methods is performed from which the strengths of our method are stressed.en
dc.description.sponsorshipThis work was partially supported by the R+D+i Project PID2020-113870GB-I00 'Desarrollo de herramientas de Soft Computing para la Ayuda al Diagnóstico Clínico y a la Gestión de Emergencias (HESOCODICE)', funded by MCIN/AEI/10.13039/501100011033/ and by the R+D+i Project PID2019-108392GB-I00 'Fusión de datos considerando las disimilitudes y otro tipo de relaciones entre los mismos y aplicación a inteligencia artificial' funded by MCIN/AEI/10.13039/501100011033/. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMir-Fuentes, A., De Miguel, L., Massanet, S., Mir, A., Riera, J. V. (2024) On a total order on the set of Z-numbers based on discrete fuzzy numbers. Computational and Applied Mathematics, 43(5), 1-27. https://doi.org/10.1007/s40314-024-02803-6.
dc.identifier.doi10.1007/s40314-024-02803-6
dc.identifier.issn2238-3603
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/52354
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofComputational and Applied Mathematics 43, 311, (2024)
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113870GB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1007/s40314-024-02803-6
dc.rights© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectDiscrete fuzzy numbersen
dc.subjectDiscrete Z-numbersen
dc.subjectTotal orderen
dc.subjectZ-numbersen
dc.titleOn a total order on the set of Z-numbers based on discrete fuzzy numbersen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationb6673ff1-b94d-4852-be93-90b30a9c8555
relation.isAuthorOfPublication.latestForDiscoveryb6673ff1-b94d-4852-be93-90b30a9c8555

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MirFuentes_TotalOrder.pdf
Size:
526.34 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: