Using a coupled dynamic factor-random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa

dc.contributor.authorSouthworth, Jane
dc.contributor.authorBunting, Erin
dc.contributor.authorZhu, Likai
dc.contributor.authorRyan, Sadie J.
dc.contributor.authorHerrero, Hannah V.
dc.contributor.authorWaylen, Peter
dc.contributor.authorMuñoz Carpena, Rafael
dc.contributor.authorCampo-Bescós, Miguel
dc.contributor.authorKaplan, David A.
dc.contributor.departmentIngenieríaes_ES
dc.contributor.departmentIngeniaritzaeu
dc.date.accessioned2019-07-01T09:27:42Z
dc.date.available2019-07-01T09:27:42Z
dc.date.issued2018
dc.description.abstractUnderstanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude, and spatial distribution of the key environmental and socioeconomic factors driving vegetation change in a southern African savanna. This research was conducted across the Kwando, Okavango and Zambezi catchments of southern Africa (Angola, Namibia, Botswana and Zambia) and explored vegetation cover change across the region from 2001–2010. A novel coupled analysis was applied to model the dynamic biophysical factors then to determine the discrete / social drivers of spatial heterogeneity on vegetation. Previous research applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique, to ten years of monthly remotely sensed vegetation data (MODIS-derived normalized difference vegetation index, NDVI), and a suite of time-series (monthly) environmental covariates: precipitation, mean, minimum and maximum air temperature, soil moisture, relative humidity, fire and potential evapotranspiration. This initial research was performed at a regional scale to develop meso-scale models explaining mean regional NDVI patterns. The regional DFA predictions were compared to the fine-scale MODIS time series using Kendall’s Tau and Sen’s Slope to identify pixels where the DFA model we had developed, under or over predicted NDVI. Once identified, a Random Forest (RF) analysis using a series of static social and physical variables was applied to explain these remaining areas of under- and over- prediction to fully explore the drivers of heterogeneity in this savanna system. The RF analysis revealed the importance of protected areas, elevation, soil type, locations of higher population, roads, and settlements, in explaining fine scale differences in vegetation biomass. While the previously applied DFA generated a model of environmental variables driving NDVI, the RF work developed here highlighted human influences dominating that signal. The combined DFRFA model approach explains almost 90% of the variance in NDVI across this landscape from 2001–2010. Our methodology presents a unique coupling of dynamic and static factor analyses, yielding novel insights into savanna heterogeneity, and providing a tool of great potential for researchers and managers alike.en
dc.description.sponsorshipThis research was funded by NASA grant NNX09AI25G to JS: Understanding and predicting the impact of climate variability and climate change on land use and land cover change via socioeconomic institutions in southern Africa May 2009- May 2013.en
dc.format.extent18 p.
dc.format.mimetypeapplication/pdfen
dc.format.mimetypeapplication/zipen
dc.identifier.doi10.1371/journal.pone.0208400
dc.identifier.issn1932-6203
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/33536
dc.language.isoengen
dc.publisherPublic Library of Scienceen
dc.relation.ispartofPlos One, 13 (12): e0208400en
dc.relation.publisherversionhttps://doi.org/10.1371/journal.pone.0208400
dc.rights© 2018 Southworth et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectDynamic Factor Analysis (DFA)en
dc.subjectSouthern African savannaen
dc.subjectNDVIen
dc.titleUsing a coupled dynamic factor-random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africaen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication152af0c2-c115-4074-9715-fdf5f8fa6837
relation.isAuthorOfPublicatione9ca0d9f-24bc-4ce1-871f-81ce4e86b5bd
relation.isAuthorOfPublication.latestForDiscovery152af0c2-c115-4074-9715-fdf5f8fa6837

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
38_Southworth_UsingCoupled.pdf
Size:
2.88 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
38_Southworth_MatCompl.zip
Size:
3.12 MB
Format:
ZIP
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: