Low-cost eye tracking calibration: a knowledge-based study

dc.contributor.authorGarde Lecumberri, Gonzalo
dc.contributor.authorLarumbe Bergera, Andoni
dc.contributor.authorBossavit, Benoît
dc.contributor.authorPorta Cuéllar, Sonia
dc.contributor.authorCabeza Laguna, Rafael
dc.contributor.authorVillanueva Larre, Arantxa
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.date.accessioned2021-12-09T12:25:16Z
dc.date.available2021-12-09T12:25:16Z
dc.date.issued2021
dc.description.abstractSubject calibration has been demonstrated to improve the accuracy in high-performance eye trackers. However, the true weight of calibration in off-the-shelf eye tracking solutions is still not addressed. In this work, a theoretical framework to measure the effects of calibration in deep learning-based gaze estimation is proposed for low-resolution systems. To this end, features extracted from the synthetic U2Eyes dataset are used in a fully connected network in order to isolate the effect of specific user’s features, such as kappa angles. Then, the impact of system calibration in a real setup employing I2Head dataset images is studied. The obtained results show accuracy improvements over 50%, probing that calibration is a key process also in low-resolution gaze estimation scenarios. Furthermore, we show that after calibration accuracy values close to those obtained by high-resolution systems, in the range of 0.7°, could be theoretically obtained if a careful selection of image features was performed, demonstrating significant room for improvement for off-the-shelf eye tracking systemsen
dc.format.extent21 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.3390/s21155109
dc.identifier.issn1424-8220 (Electronic)
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/41210
dc.language.isoengen
dc.publisherMDPIen
dc.relation.ispartofSensors 2021, 21, 5109en
dc.relation.publisherversionhttps://doi.org/10.3390/s21155109
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectGaze-estimationen
dc.subjectCalibrationen
dc.subjectLow-resolutionen
dc.subjectTheoretical analysisen
dc.titleLow-cost eye tracking calibration: a knowledge-based studyen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicatione764f502-1d84-436f-81cd-97bfbe0240f4
relation.isAuthorOfPublication7d67c732-213a-47e0-82f8-81a897144cfa
relation.isAuthorOfPublication45f0a653-c7ac-4322-80c3-735e9988330b
relation.isAuthorOfPublication8f4eb99d-97ce-4dc9-b13a-18fcd2ab44e6
relation.isAuthorOfPublication42fe20f8-5341-4c0e-8686-333ce816adfd
relation.isAuthorOfPublicationd3bfd5bf-8426-455b-bcc4-897ddb0d4c2e
relation.isAuthorOfPublication.latestForDiscoverye764f502-1d84-436f-81cd-97bfbe0240f4

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garde_LowCostEye.pdf
Size:
1.74 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: