Supervised penalty-based aggregation applied to motor-imagery based brain-computer-interface

dc.contributor.authorFumanal Idocin, Javier
dc.contributor.authorVidaurre Arbizu, Carmen
dc.contributor.authorFernández Fernández, Francisco Javier
dc.contributor.authorGómez Fernández, Marisol
dc.contributor.authorAndreu-Pérez, Javier
dc.contributor.authorPrasad, M.
dc.contributor.authorBustince Sola, Humberto
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.date.accessioned2024-05-22T11:46:34Z
dc.date.available2024-05-22T11:46:34Z
dc.date.issued2024
dc.date.updated2024-05-22T11:31:33Z
dc.description.abstractIn this paper we propose a new version of penalty-based aggregation functions, the Multi Cost Aggregation choosing functions (MCAs), in which the function to minimize is constructed using a convex combination of two relaxed versions of restricted equivalence and dissimilarity functions instead of a penalty function. We additionally suggest two different alternatives to train a MCA in a supervised classification task in order to adapt the aggregation to each vector of inputs. We apply the proposed MCA in a Motor Imagery-based Brain- Computer Interface (MI-BCI) system to improve its decision making phase. We also evaluate the classical aggregation with our new aggregation procedure in two publicly available datasets. We obtain an accuracy of 82.31% for a left vs. right hand in the Clinical BCI challenge (CBCIC) dataset, and a performance of 62.43% for the four-class case in the BCI Competition IV 2a dataset compared to a 82.15% and 60.56% using the arithmetic mean. Finally, we have also tested the goodness of our proposal against other MI-BCI systems, obtaining better results than those using other decision making schemes and Deep Learning on the same datasets.en
dc.description.sponsorshipJavier Fumanal Idocin, Javier Fernandez, and Humberto Bustince's research has been supported by the project PID2019-108392GB I00 (AEI/10.13039/501100011033). Carmen Vidaurre research has been funded by the project RyC2014-15671.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationFumanal-Idocin, J., Vidaurre, C., Fernandez, J., Gómez, M., Andreu-Perez, J., Prasad, M., Bustince, H. (2024) Supervised penalty-based aggregation applied to motor-imagery based brain-computer-interface. Pattern Recognition, 145, 1-11. https://doi.org/10.1016/j.patcog.2023.109924.es_ES
dc.identifier.doi10.1016/j.patcog.2023.109924
dc.identifier.issn0031-3203
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/48167
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofPattern Recognition (2024), vol. 145, 109924es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//RYC-2014-15671/ES/
dc.relation.publisherversionhttps://doi.org/10.1016/j.patcog.2023.109924
dc.rights© 2023 The Author(s). This is an open access article under the CC BY-NC-ND license.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectBrain-computer interfaceen
dc.subjectMotor imageryen
dc.subjectPenalty functionen
dc.subjectAggregation functionsen
dc.subjectClassificationen
dc.subjectSignal processingen
dc.titleSupervised penalty-based aggregation applied to motor-imagery based brain-computer-interfaceen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication5193d488-fd4e-4556-88ca-ba5116412a36
relation.isAuthorOfPublicationbfc272aa-95a8-45b2-ada9-5e679009a082
relation.isAuthorOfPublication741321a5-40af-41aa-bacb-5da283dd18ab
relation.isAuthorOfPublication71fc3a8f-62c3-41cf-bca2-eeaaa41d54af
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery5193d488-fd4e-4556-88ca-ba5116412a36

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fumanal_SupervisedPenalty.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: