A comparative study of CO2 forecasting strategies in school classrooms: a step toward improving indoor air quality

dc.contributor.authorGarcia-Pinilla, Peio
dc.contributor.authorJurío Munárriz, Aránzazu
dc.contributor.authorPaternain Dallo, Daniel
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.funderGobierno de Navarra / Nafarroako Gobernua
dc.date.accessioned2025-06-18T08:24:59Z
dc.date.available2025-06-18T08:24:59Z
dc.date.issued2025-03-09
dc.date.updated2025-06-18T08:18:30Z
dc.description.abstractThis paper comprehensively investigates the performance of various strategies for predicting CO2 levels in school classrooms over different time horizons by using data collected through IoT devices. We gathered Indoor Air Quality (IAQ) data from fifteen schools in Navarra, Spain between 10 January and 3 April 2022, with measurements taken at 10-min intervals. Three prediction strategies divided into seven models were trained on the data and compared using statistical tests. The study confirms that simple methodologies are effective for short-term predictions, while Machine Learning (ML)-based models perform better over longer prediction horizons. Furthermore, this study demonstrates the feasibility of using low-cost devices combined with ML models for forecasting, which can help to improve IAQ in sensitive environments such as schools.en
dc.description.sponsorshipA.J. and D.P. were partially supported by the Spanish Ministry of Science and Innovation through the project PID2022-136627NB-I00 (MCIN/AEI/10.13039/501100011033/FEDER, UE). P.G.-P. was supported by the Gobernment of Navarra under 'Doctorados Industriales 2021'.
dc.format.mimetypeapplication/pdf
dc.identifier.citationGarcia-Pinilla, P., Jurio, A., Paternain, D. (2025). A comparative study of CO2 forecasting strategies in school classrooms: a step toward improving indoor air quality. Sensors, 25(7), 1-18. https://doi.org/10.3390/s25072173.
dc.identifier.doi10.3390/s25072173
dc.identifier.issn1424-8220
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/54238
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofSensors (2025), vol. 25, núm. 7
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136627NB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.3390/s25072173
dc.rights© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAir quality modelingen
dc.subjectAir quality sensorsen
dc.subjectForecastingen
dc.subjectIndoor air qualityen
dc.subjectMachine learningen
dc.subjectPollutantsen
dc.titleA comparative study of CO2 forecasting strategies in school classrooms: a step toward improving indoor air qualityen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication960da212-60aa-4563-9279-9d95a1e9de78
relation.isAuthorOfPublication73222e0e-83db-4a05-ac1e-e5caff9fda6b
relation.isAuthorOfPublicationca16c024-51e4-4f8f-b457-dc5307be32d9
relation.isAuthorOfPublication.latestForDiscovery960da212-60aa-4563-9279-9d95a1e9de78

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garcia_Comparative.pdf
Size:
8.11 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: