Nanoparticle size distribution and surface effects on the thermal dependence of magnetic anisotropy

dc.contributor.authorGomide, Guilherme
dc.contributor.authorCabreira Gomes, Rafael
dc.contributor.authorGomes Viana, Márcio
dc.contributor.authorCortez Campos, Álex Fabiano
dc.contributor.authorAquino, Renata
dc.contributor.authorLópez Ortega, Alberto
dc.contributor.authorPerzynski, Régine
dc.contributor.authorDepeyrot, Jérõm
dc.contributor.departmentZientziakeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.departmentCienciases_ES
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2022-04-26T12:49:59Z
dc.date.available2023-01-14T00:00:13Z
dc.date.issued2022
dc.description.abstractStandard approaches to investigate the anisotropy of nanoparticle assemblies are either by means of zero-field-cooled-field-cooled DC magnetization curves or by analyzing the coercivity at low temperatures. However, these methodologies are restricted to average values of an anisotropy constant, without probing its temperature dependence or symmetry. In this context, analyzing the thermal dependence of coercivity arises as a more comprehensive approach to assess anisotropic properties. Here, we investigate experimentally the thermal dependence of coercivity for cobalt ferrite nanoparticle samples synthesized by different methods, in a large range of nanoparticle diameters, resulting in samples with different internal structure, surface roughness, and size distribution. Our analysis consists of accounting for the size distribution and thermal dependence of the relevant variables, allowing us to access the anisotropy constant as a function of temperature. The results indicate that the surface plays an important role in the low-field determined anisotropy constants, with the thermal dependence pointing to a combination of types/sources of anisotropy affecting the coercivity. While the cubic magnetocrystalline anisotropy dominates for nanoparticles with higher diameter, the influence of surface contribution increases substantially for smaller sizes. The state of the surface is shown to be key for determining the main source of anisotropy.en
dc.description.sponsorshipThe authors gratefully acknowledge the financial support of the Brazilian agencies CAPES, CNPq (Grants 465259/2014-6, 202340/2015-5 and 400849/2016-0), INCT-FCx (Grant 2014/50983-3) and FAP-DF (Grants 0193.001569/2017 and 0193.001376/2016). A.L.O. acknowledges support from the Universidad Pública de Navarra (Grant PJUPNA2020). The authors of University of Brasília and Sorbonne Université acknowledge support by contract CAPES/COFECUB no 88881.370915/2019-01 and Ph959/20.en
dc.embargo.lift2023-01-14
dc.embargo.terms2023-01-14
dc.format.extent28 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1021/acs.jpcc.1c06664
dc.identifier.issn1932-7447
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/42806
dc.language.isoengen
dc.publisherAmerican Chemical Societyen
dc.relation.ispartofJournal of Physical Chemistry C, 126 (3), 1581-1589en
dc.relation.publisherversionhttps://doi.org/10.1021/acs.jpcc.1c06664
dc.rights© 2022 American Chemical Societyen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectGranular materialsen
dc.subjectTransmission electron microscopyen
dc.subjectNanoparticlesen
dc.subjectMagnetic propertiesen
dc.subjectScanning probe microscopyen
dc.titleNanoparticle size distribution and surface effects on the thermal dependence of magnetic anisotropyen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationc295cba6-cd13-4ee7-accd-0a1d5266c972
relation.isAuthorOfPublication.latestForDiscoveryc295cba6-cd13-4ee7-accd-0a1d5266c972

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gomide_NanoparticleSize.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: