Modeling of noisy acceleration signals from quasi-periodic movements for drift-free position estimation

dc.contributor.authorZivanovic, Miroslav
dc.contributor.authorMillor Muruzábal, Nora
dc.contributor.authorGómez Fernández, Marisol
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.date.accessioned2024-02-12T11:04:44Z
dc.date.available2024-02-12T11:04:44Z
dc.date.issued2019
dc.date.updated2024-02-12T10:58:33Z
dc.description.abstractWe present a novel approach to drift-free position estimation from noisy acceleration signals which often arise from quasi-periodic small-amplitude body movements. In contrast to the existing methods, this data-driven strategy is designed to properly describe time-variant harmonic structures in single-channel acceleration signals for low signal-to-noise ratios. Methods: It comprises three processing steps: (1) shorttime modeling of acceleration dynamics (instantaneous harmonic amplitudes and phases) in the analysis frame, (2) analytical integration which yields short-time position, and (3) overlap-add recombination for full length position synthesis. Results: The comparative results, obtained from the medio-lateral Xacceleration components from 30s Chair Stand Test recordings, suggest that the proposed method outperforms two state-of-theart reference methods in terms of Euclidean error, root mean square error, correlation coefficient and harmonic-to-noise ratio. Conclusion: A major benefit of the method is that acceleration signal components unrelated to movement are suppressed in the whole analysis bandwidth, which allows for position estimation completely free of low-frequency artifacts. Significance: We believe that the method can be useful in frailty assessment in elderly population, as well as in clinical applications related to gait analysis in aging and rehabilitation.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationZivanovic, M, Millor, N, Gomez, M (2019) Modeling of Noisy Acceleration Signals From Quasi-Periodic Movements for Drift-Free Position Estimation. IEEE Journal of biomedical and health informatics, 23(4), 1558-1565. https://doi.org/10.1109/JBHI.2018.2868370.en
dc.identifier.doi10.1109/JBHI.2018.2868370
dc.identifier.issn2168-2194
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/47438
dc.language.isoengen
dc.publisherIEEEen
dc.relation.ispartofIEEE Journal of Biomedical and Health Informatics, vol. 23, no. 4, July 2019en
dc.relation.publisherversionhttps://doi.org/10.1109/JBHI.2018.2868370
dc.rights© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worken
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectInertial uniten
dc.subjectQuasi-periodic movementen
dc.subjectIntegration drift and noiseen
dc.subjectInstantaneous harmonic amplitude and phaseen
dc.subject30-s chair stand testen
dc.titleModeling of noisy acceleration signals from quasi-periodic movements for drift-free position estimationen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationdc2b0e94-3db8-470e-8912-58ae1b092ba7
relation.isAuthorOfPublicationd42358ae-f86c-4e54-a3a7-fcfe208a75d0
relation.isAuthorOfPublication71fc3a8f-62c3-41cf-bca2-eeaaa41d54af
relation.isAuthorOfPublication.latestForDiscovery71fc3a8f-62c3-41cf-bca2-eeaaa41d54af

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JBHI_manuscript.pdf
Size:
476.81 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: