Real elements and p-nilpotence of finite groups
Date
2016
Authors
Director
Publisher
Aracne
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa
Impacto
Abstract
Our first main result proves that every element of order 4 of a Sylow 2-subgroup S of a minimal non-2-nilpotent group G, is a real element of S. This allows to give a character-free proof of a theorem due to Isaacs and Navarro (see [9, Theorem B]). As an application, the authors show a common extension of the p-nilpotence criteria proved in [3] and [9].
Description
Keywords
Normal p-complement, Control of fusion
Department
Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
Creative Commons Attribution-Noncommercial License (CC BY-NC 3.0)
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.