Gonzalo García, Ramón

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gonzalo García

First Name

Ramón

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 106
  • PublicationOpen Access
    A gap waveguide-based compact rectangular waveguide to a packaged microstrip inline transition
    (MDPI, 2020) Pérez Escudero, José Manuel; Torres García, Alicia E.; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Institute of Smart Cities - ISC
    In this paper two different simple to design and easy to manufacturing transitions from a microstrip to rectangular waveguide based on ridge and groove gap waveguides are studied. The first one is based on a combination of a groove and ridge gap waveguide. In this case, the microstrip substrate occupies the whole bottom metallic housing block, namely, the transition and the gap between the bed of nails and the lid; therefore, it does not require any substrate shaping. Nevertheless, the transition needs to replace groove waveguide by ridge gap waveguide sections to avoid higher-order mode excitation. In the second approach, based on only a groove gap waveguide, the substrate is shaped to be only in the microstrip section, that is, outside the bed of nails area. This leads to a simplification of the design procedure. Prototypes of both transitions have been characterized, showing good agreement with the simulations taking into account the manufacturing tolerances. Performance comparable to the state-of-the-art in this frequency band has been achieved.
  • PublicationOpen Access
    Design of a groove gap waveguide to microstrip inline transition
    (IEEE, 2019) Pérez Escudero, José Manuel; Torres García, Alicia E.; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper the design of an inline transition between microstrip and groove gap waveguide operating at Wband is presented. The transition consists of two sections: a tapered microstrip line and a Chebyshev transformer. The simplicity of this design makes this transition appropriate for MMIC packaging at millimeter frequencies and above. Experimental validation has been carried out in theW-band. Good performance has been achieved: return loss better than 10 dB and mean insertion loss lower than 2 dB.
  • PublicationOpen Access
    Manufacture and characteristics of wide bandwith, 3-D, EBG crystals for sub-millimetre antenna substrates
    (2004) Azcona, L.; Alderman, B.; Huggard, P.G.; Gonzalo García, Ramón; Martínez Pascual, Beatriz; Ederra Urzainqui, Íñigo; Río Bocio, Carlos del; Hon, B.P. de; Beurden, M.C. van; Marchand, L.; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
  • PublicationOpen Access
    Diseño de una antena dual gaussiana de doble profundidad de corrugación
    (2003) Ortiz Pérez de Eulate, Noelia; Teniente Vallinas, Jorge; Gonzalo García, Ramón; Río Bocio, Carlos del; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper a new design of a dual-band corrugated horn antenna is presented. The design is based on a gaussian profile to allow high pattern symmetry, low-crosspolar levels and low-side-lobes over a wide frequency range. To achieve a dual-band corrugated horn antenna, dual depth corrugations were used along the whole profile. The design presents a nice far field radiation pattern, which is compatible with the frequency reuse requirements in satellite communication antennas. The horn has been designed to operate in two frequency bands between X, Ku and K bands. Simulations and measurements show pretty good radiation patterns with return loss below –20dB and crosspolar-levels below –30dB in both frequency bands.
  • PublicationOpen Access
    A water content continuous monitoring of grapevine xylem tissue using a portable low-power cost-effective FMCW radar
    (IEEE, 2019) Quemada Mayoral, Carlos; García González, Cebrián; Iriarte Galarregui, Juan Carlos; Marín Ederra, Diana; Gastón Beraza, Diego; Miranda Jiménez, Carlos; Gonzalo García, Ramón; Maestrojuán Biurrun, Itziar; Santesteban García, Gonzaga; Ederra Urzainqui, Íñigo; Agronomia, Bioteknologia eta Elikadura; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Agronomía, Biotecnología y Alimentación; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI025 VITHZ; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2016-000084 RAFF
    This paper presents the real-time monitoring of a grapevine’s water content that flows up through the xylem tissue by means of a frequency-modulated continuous-wave (FMCW) radar. The application of an optimization process, based on the super-resolution multiple signal classification (MUSIC) algorithm, has enabled the reduction of the bandwidth required to discern the xylem water content, and thus the operating frequency, achieving a depth resolution of at least 3 mm. This design advantage has resulted in a significant step forward towards a real life application, allowing the use of fully-integrated off-the-shelf components in order to implement a completely portable low-power cost-effective radar at 23.1 GHz with a 3.4 GHz bandwidth. The sensor performance has been evaluated by means of three different experiments: irrigation cycles, day/night cycles and comparison between irrigation cycles at different temperatures. From the experimental results, it is possible to assert that the contactless sensor presented in this work is very sensitive to changes in the plant’s water content, differentiating between daytime and nighttime. In addition, it has been proved that temperature has a noticeable influence over the evapotranspiration, observing negative drying slopes of 5.62 mV/cycle and 6.28 mV/cycle at 23ºC and 26ºC respectively.
  • PublicationOpen Access
    Silicon integrated subharmonic mixer on a photonic-crystal platform
    (IEEE, 2021) Torres García, Alicia E.; Pérez Escudero, José Manuel; Teniente Vallinas, Jorge; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This paper presents a planar silicon integrated subharmonic mixer on top of a photonic-crystal platform. The local oscillator (LO) power is injected through a 2D photoniccrystal (PC) slab to a resonant cavity that effectively couples the signal to a planar bow-tie antenna. The same antenna, which is printed on the top of the PC cavity, contains an antiparallel Schottky diode pair which performs the down-conversion. The proposed design is a simple, easy to integrate, low cost, low profile device. Moreover, the described fabrication process is compatible with active components integration. The performance of the design has been experimentally demonstrated showing good agreement with the simulation and is comparable with the stateof-the-art of planar mixers. The work presented here is based on concepts and technologies from electronics and photonics domains and may be a good starting point for the creation of new devices, allowing the integration and upgrading of existing techniques from both worlds.
  • PublicationOpen Access
    A multipolar analysis of near-field absorption and scattering processes
    (IEEE, 2013) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ziolkowski, Richard W.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A multipolar formulation is adopted to investigate the absorption and scattering processes involved in near-field interactions. This approach allows one to determine the upper bounds for the absorbed and radiated powers that would be achieved by an ideal lossless sensor, which are of particular interest, for example, to wireless power transfer (WPT), wireless sensors and near-field coupled radiators. The multipolar formulation also helps to extricate the fundamental compromises that must be addressed in the design of such systems, as well as to identify strategies that could approach their best possible performances. The general theory is illustrated with an example consisting of a coated sensor illuminated by a Hertzian dipole, which is a representative example of any scattering or radiating system based on small resonators. The example also serves to compare the performance characteristics obtained with different phenomena such as multipolar resonances, phaseinduced interference effects and cloaking.
  • PublicationOpen Access
    Estudio de la posibilidad de utilizar modos de orden superior en guías de onda cuasi-ópticas
    (1995) Río Bocio, Carlos del; Gonzalo García, Ramón; Marín Pilz, Miguel; Sorolla Ayza, Mario; Möbius, Arnold; Thumm, Manfred; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The possibility to employ low power gyrotron tubes (10-30 kW, CW) at millimeter wave frequencies (30-100 GHz) has potential applications in advanced ceramic sintering, surface coating, radar, remote sensing, etc.. In materials processing applications, the final shape of the beam is not relevant, because the experiment have to be done in a cavity which has a metallic mode stirrer in order to obtain inside a uniform distribution of the electromagnetic fields. In this paper, we present a preliminar study, showing that it is possible to use high order modes in the transmission line to carry the power to the final experiment efficiently.
  • PublicationOpen Access
    Fe-rich ferromagnetic wires for self-sensing materials
    (IEEE, 2012) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The possibility of using Fe-rich wires in mechanical stress self-sensing materials is investigated. To this end, a retrieval technique aimed to characterize the high-frequency magnetoimpedance effect in ferromagnetic wires under mechanical stresses is proposed. The technique is based on the measurement of the wires inside a metallic rectangular waveguide, and it is validated through numerical simulations and tested with already published experimental data. In addition, the studied Fe-rich wires are characterized by the occurrence of the natural ferromagnetic resonance, whose frequency position increases from 7 GHz to 8.25 GHz for elongations ranging from 0 μm to 60 μm.
  • PublicationOpen Access
    Design of a multifrequency antenna array with the use of left-handed superstrates
    (2005) Sáenz Sáinz, Elena; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, the radiation performances of different antenna configuration based on Left-Handed superstrates are presented. First of all, the behaviour of a Left- Handed (LH) unit cell is analysed, showing a resonant response with pass band and stop band frequencies. In order to improve the radiation performances of a single dipole, ie., to increase the directivity and efficiency and to reduce the back radiation, diverse LH superstrates working at the resonant frequency of the dipole are analysed. With these configurations, improvements in terms of directivity higher than 6 dB with efficiency closer to 100 % have been obtained.