Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis
Date
2015Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Impact
|
10.1186/s12870-014-0378-0
Abstract
Background: The increased selection pressure of the herbicide glyphosate has played a role in the evolution of glyphosate-resistance in weedy species, an issue that is becoming a threat to global agriculture. The molecular components involved in the cellular toxicity response to this herbicide at the expression level are still unidentified. Results: In this study, we identify the protein kinase G ...
[++]
Background: The increased selection pressure of the herbicide glyphosate has played a role in the evolution of glyphosate-resistance in weedy species, an issue that is becoming a threat to global agriculture. The molecular components involved in the cellular toxicity response to this herbicide at the expression level are still unidentified. Results: In this study, we identify the protein kinase GCN2 as a cellular component that fosters the action of glyphosate in the model plant Arabidopsis thaliana. Comparative studies using wild-type and gcn2 knock-out mutant seedlings show that the molecular programme that the plant deploys after the treatment with the herbicide, is compromised in gcn2. Moreover, gcn2 adult plants show a lower inhibition of photosynthesis, and both seedlings and adult gcn2 plants accumulate less shikimic acid than wild-type after treatment with glyphosate. Conclusions: These results points to an unknown GCN2-dependent factor involved in the cascade of events triggered by glyphosate in plants. Data suggest either that the herbicide does not equally reach the target-enzyme in a gcn2 background, or that a decreased flux in the shikimate pathway in a gcn2 plants minimize the impact of enzyme inhibition. [--]
Subject
Glyphosate,
GCN2,
Transcriptomic,
Shikimate,
Translation,
Herbicides,
Horseweed conyza-canadensis,
Sugar-beet leaves,
Herbicide resistance,
Vacuolar sequestration,
Phosphate transporter,
Gene expression,
Thaliana,
Stress,
EIF2-alpha,
Wheat
Publisher
BioMed Central
Published in
BMC Plant Biology 2015, 15:14
Description
Incluye 7 ficheros de datos
Departament
Universidad Pública de Navarra. Departamento de Ciencias del Medio Natural /
Nafarroako Unibertsitate Publikoa. Natura Ingurunearen Zientziak Saila
Publisher version
Sponsorship
This work was mainly supported by the Universidad Politecnica de Valencia (PAID2011-16) and the Ministerio Español de Ciencia y Tecnología (BFU2011-22526). The work was partially supported through a grant from the Ministerio Español de Ciencia y Tecnología (AGL-2010-18621).
Appears in Collections
Items in Academica-e are protected by copyright with all rights reserved, unless otherwise noted.
Except where otherwise noted, this item's license is described as © 2015 Faus et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.