High-isolation leaky-wave array antenna based on CRLH-metamaterial implemented on SIW with ±30° frequency beam-scanning capability at millimetre-waves
Date
2019Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Impact
|
10.3390/electronics8060642
Abstract
The paper presents a feasibility study on the design of a new metamaterial leaky-wave antenna (MTM-LWA) used in the construction of a 1 × 2 array which is implemented using substrate-integrated waveguide (SIW) technology for millimetre-wave beamforming applications. The proposed 1 × 2 array antenna consists of two LWAs with metamaterial unit-cells etched on the top surface of the SIW. The metamat ...
[++]
The paper presents a feasibility study on the design of a new metamaterial leaky-wave antenna (MTM-LWA) used in the construction of a 1 × 2 array which is implemented using substrate-integrated waveguide (SIW) technology for millimetre-wave beamforming applications. The proposed 1 × 2 array antenna consists of two LWAs with metamaterial unit-cells etched on the top surface of the SIW. The metamaterial unit-cell, which is an E-shaped transverse slot, causes leakage loss and interrupts current flow over SIW to enhance the array’s performance. The dimensions of the LWA are 40 × 10 × 0.75 mm3. Mutual-coupling between the array elements is suppressed by incorporating a metamaterial shield (MTM-shield) between the two antennas in the array. The LWA operates over a frequency range of 55–65 GHz, which is corresponding to 16.66% fractional bandwidth. The array is shown to exhibit beam-scanning of ±30° over its operating frequency range. Radiation gain in the backward (−30°), broadside (0°), and forward (+30°) directions are 8.5 dBi, 10.1 dBi, and 9.5 dBi, respectively. The decoupling slab is shown to have minimal effect on the array’s performance in terms of impedance bandwidth and radiation specifications. The MTM-shield is shown to suppress the mutual coupling by ~25 dB and to improve the radiation gain and efficiency by ~1 dBi and ~13% on average, respectively. [--]
Subject
Metamaterials (MTM),
Leaky-wave antenna (LWA),
Antenna arrays,
Substrate integrated waveguide (SIW),
Transverse slots,
Beam-scanning,
Mutual coupling isolation,
Millimetre-wave,
Composite right/left-handed transmission line (CRLH-TL)
Publisher
MDPI
Published in
Electronics, 2019, 8 (6), 642
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicación /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza Saila
Publisher version
Sponsorship
This work is partially supported by grant agreement H2020-MSCA-ITN-2016 SECRET-722424 and the UK EPSRC under grant EP/E022936/1.