Lipschitz free p-spaces for 0 < p < 1
Date
2020Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Impact
|
10.1007/s11856-020-2061-5
Abstract
This paper initiates the study of the structure of a new class of p-Banach spaces, 0 <p < 1, namely the Lipschitz free p-spaces (alternatively called Arens—Eells p-spaces) Fp(M) over p-metric spaces. We systematically develop the theory and show that some results hold as in the case of p = 1, while some new interesting phenomena appear in the case 0 <p < 1 which have no analogue in the classical ...
[++]
This paper initiates the study of the structure of a new class of p-Banach spaces, 0 <p < 1, namely the Lipschitz free p-spaces (alternatively called Arens—Eells p-spaces) Fp(M) over p-metric spaces. We systematically develop the theory and show that some results hold as in the case of p = 1, while some new interesting phenomena appear in the case 0 <p < 1 which have no analogue in the classical setting. For the former, we, e.g., show that the Lipschitz free p-space over a separable ultrametric space is isomorphic to ℓp for all 0 <p ≤ 1. On the other hand, solving a problem by the first author and N. Kalton, there are metric spaces N⊂M such that the natural embedding from Fp(N) to Fp(M) is not an isometry. [--]
Subject
p-Banach spaces,
Lipschitz free p-spaces
Publisher
Springer Hebrew University Magnes Press
Published in
Israel Journal of Mathematics, 2020, 240, 65–98
Departament
Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas /
Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute for Advanced Materials and Mathematics - INAMAT2
Publisher version
Sponsorship
F. Albiac acknowledges the support of the Spanish Ministry for Economy and Competitivity Grants MTM2014-53009-P for Análisis Vectorial, Multilineal y Aplicaciones, and MTM2016-76808-P for Operators, lattices, and structure of Banach spaces as well as the Spanish Ministry for Science and Innovation under Grant PID2019-1077701GB-I00. J. L. Ansorena acknowledges the support of the Spanish Ministry for Economy and Competitivity Grant MTM2014-53009-P for Análisis Vectorial, Multilineal y Aplicaciones. M. Cúth has been supported by Charles University Research program No. UNCE/SCI/023 and by the Research grant GACR 17-04197Y. M. Doucha was supported by the GACR project 16-34860L and RVO: 67985840.