Ammonia gas optical sensor based on lossy mode resonances

View/ Open
Date
2023Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Project Identifier
Impact
|
10.1109/LSENS.2023.3301843
Abstract
This letter presents the fabrication and characterization of an ammonia (NH 3) gas optical sensor based on lossy mode resonances (LMRs). A chromium (III) oxide (Cr 2 O 3) thin film deposited onto a planar waveguide was used as LMR supporting coating. The obtained LMR shows a maximum attenuation wavelength or resonance wavelength centered at 673 nm. The optical properties of the coating can be mod ...
[++]
This letter presents the fabrication and characterization of an ammonia (NH 3) gas optical sensor based on lossy mode resonances (LMRs). A chromium (III) oxide (Cr 2 O 3) thin film deposited onto a planar waveguide was used as LMR supporting coating. The obtained LMR shows a maximum attenuation wavelength or resonance wavelength centered at 673 nm. The optical properties of the coating can be modified as a function of the presence and concentration of NH 3 in the external medium. Consequently, the refractive index of the Cr 2 O 3 thin film will change, producing a red-shift of the resonance wavelength. Obtained devices were tested for different concentrations of NH 3 as well as repetitive cycles. Concentrations as low as 10 ppbv of NH 3 were detected at room temperature. Machine learning regression models were used to mitigate the cross-sensitivity of the device under temperature and humidity fluctuations. [--]
Subject
Sensor materials,
Ammonia gas sensor,
Lossy mode resonance (LMR),
Machine learning,
Planar waveguides
Publisher
IEEE
Published in
IEEE Sensors Letters, 7(8), 2023
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicación /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute of Smart Cities - ISC
Publisher version
Sponsorship
This work was supported in part by the Spanish Ministry of Science and Innovation under Grant FPI PRE2020-091797, in part by the Spanish Agencia Estatal de Investigacion under Grant PID2022-137437OB-I00, and in part by the European Union's Horizon 2020 Research and Innovation Programme (Stardust-Holistic and Integrated Urban Model for Smart Cities) under Grant 774094.