Repository logo
  • Español
  • Euskera
  • English
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • Español
  • Euskera
  • English
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Arasanz Esteban, Hugo"

Now showing 1 - 20 of 24
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    Circulating low density neutrophils are associated with resistance to anti-PD1 immunotherapy in squamous head and neck cancer
    (Wiley, 2023) Arrazubi, Virginia; Goñi Irigoyen, Saioa; González Borja, Iranzu; Hernández García, Irene; Arasanz Esteban, Hugo; Pérez Sanz, Jairo; Bocanegra Gondán, Ana Isabel; Kochan, Grazyna; Escors Murugarren, David; Ruiz de Azúa, Yerani; Elizalde, Jesús María; Viúdez, Antonio; Vera García, Ruth; Ciencias de la Salud; Osasun Zientziak
    Background: Identification of predictive biomarkers to Immune checkpoint inhibitors (ICIs) in head and neck cancer (HNSCC) is an unmet need. Methods: This was a prospective observational study including 25 patients with HNSCC treated with immunotherapy or chemotherapy after a prior platinum-based regimen. Low density neutrophils (LDNs) and serum markers were analyzed. Results: In the immunotherapy cohort, patients with high LDN levels had a shorter progression free survival (PFS) (1.8 months vs. 10.9 months; *p = 0.034). Also, progressors showed higher percentage of LDNs compared to non-progressors although significance was not reached (mean 20.68% vs. 4.095%, p = 0.0875). These findings were not replicated in patients treated with chemotherapy. High levels of interleukin-7 (IL7) were correlated with a significantly longer overall survival (OS) (13.47 months 3.51 vs. months, *p = 0.013). Conclusions: High baseline circulating LDNs and low IL7 could identify a subset of patients intrinsically refractory to ICIs as monotherapy in HNSCC.
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    Clinical landscape of LAG-3-targeted therapy
    (Elsevier, 2022) Chocarro de Erauso, Luisa; Blanco, Ester; Arasanz Esteban, Hugo; Fernández Rubio, Leticia; Bocanegra Gondán, Ana Isabel; Echaide Górriz, Míriam; Garnica, Maider; Ramos, Pablo; Fernández Hinojal, Gonzalo; Vera García, Ruth; Kochan, Grazyna; Escors Murugarren, David; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Lymphocyte-activated gene 3 (LAG-3) is a cell surface inhibitory receptor and a key regulator of immune homeostasis with multiple biological activities related to T-cell functions. LAG-3 is considered a next-generation immune checkpoint of clinical importance, right next to programmed cell death protein 1 (PD-1) and cytotoxic T-cell lymphocyte antigen-4 (CTLA-4). Indeed, it is the third inhibitory receptor to be exploited in human anticancer immunotherapies. Several LAG-3-antagonistic immunotherapies are being evaluated at various stages of preclinical and clinical development. In addition, combination therapies blocking LAG-3 together with other immune checkpoints are also being evaluated at preclinical and clinical levels. Indeed, the co-blockade of LAG-3 with PD-1 is demonstrating encouraging results. A new generation of bispecific PD-1/LAG-3-blocking agents have also shown strong capacities to specifically target PD-1+ LAG-3+ highly dysfunctional T cells and enhance their proliferation and effector activities. Here we identify and classify preclinical and clinical trials conducted involving LAG-3 as a target through an extensive bibliographic research. The current understanding of LAG-3 clinical applications is summarized, and most of the publically available data up to date regarding LAG-3-targeted therapy preclinical and clinical research and development are reviewed and discussed.
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    Cutting-edge CAR engineering: beyond T cells
    (MDPI, 2022) Chocarro de Erauso, Luisa; Blanco, Ester; Fernández Rubio, Leticia; Arasanz Esteban, Hugo; Bocanegra Gondán, Ana Isabel; Echaide Górriz, Míriam; Garnica, Maider; Ramos, Pablo; Piñeiro Hermida, Sergio; Vera García, Ruth; Kochan, Grazyna; Escors Murugarren, David; Ciencias de la Salud; Osasun Zientziak
    Chimeric antigen receptor (CAR)-T adoptive cell therapy is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in haematological malignancies. However, it still lacks efficacy in solid tumours, possibly because engineered T cells become inactive within the immunosuppressive tumour microenvironment (TME). In the TME, cells of the myeloid lineage (M) are among the immunosuppressive cell types with the highest tumour infiltration rate. These cells interact with other immune cells, mediating immunosuppression and promoting angiogenesis. Recently, the development of CAR-M cell therapies has been put forward as a new candidate immunotherapy with good efficacy potential. This alternative CAR strategy may increase the efficacy, survival, persistence, and safety of CAR treatments in solid tumours. This remains a critical frontier in cancer research and opens up a new possibility for next-generation personalised medicine to overcome TME resistance. However, the exact mechanisms of action of CAR-M and their effect on the TME remain poorly understood. Here, we summarise the basic, translational, and clinical results of CAR-innate immune cells and CAR-M cell immunotherapies, from their engineering and mechanistic studies to preclinical and clinical development.
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    Cutting-edge: preclinical and clinical development of the first approved LAG-3 inhibitor
    (MDPI, 2022) Chocarro de Erauso, Luisa; Bocanegra Gondán, Ana Isabel; Blanco, Ester; Fernández Rubio, Leticia; Arasanz Esteban, Hugo; Echaide Górriz, Míriam; Garnica, Maider; Ramos, Pablo; Piñeiro Hermida, Sergio; Vera García, Ruth; Escors Murugarren, David; Kochan, Grazyna; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Immune checkpoint inhibitors (ICIs) have revolutionized medical practice in oncology since the FDA approval of the first ICI 11 years ago. In light of this, Lymphocyte-Activation Gene 3 (LAG-3) is one of the most important next-generation immune checkpoint molecules, playing a similar role as Programmed cell Death protein 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4). 19 LAG-3 targeting molecules are being evaluated at 108 clinical trials which are demonstrating positive results, including promising bispecific molecules targeting LAG-3 simultaneously with other ICIs. Recently, a new dual anti-PD-1 (Nivolumab) and anti-LAG-3 (Relatimab) treatment developed by Bristol Myers Squibb (Opdualag), was approved by the Food and Drug Administration (FDA) as the first LAG-3 blocking antibody combination for unresectable or metastatic melanoma. This novel immunotherapy combination more than doubled median progression-free survival (PFS) when compared to nivolumab monotherapy (10.1 months versus 4.6 months). Here, we analyze the large clinical trial responsible for this historical approval (RELATIVITY-047), and discuss the preclinical and clinical developments that led to its jump into clinical practice. We will also summarize results achieved by other LAG-3 targeting molecules with promising anti-tumor activities currently under clinical development in phases I, I/II, II, and III. Opdualag will boost the entry of more LAG-3 targeting molecules into clinical practice, supporting the accumulating evidence highlighting the pivotal role of LAG-3 in cancer.
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    Descubrimiento de nuevas dianas terapéuticas mediante un sistema de selección racional de líneas tumorales de cáncer de páncreas adaptadas a la inhibición de rutas de señalización
    (2020) Arasanz Esteban, Hugo; Escors Murugarren, David; Kochan, Grazyna; Ciencias de la Salud; Osasun Zientziak
    Los objetivos de esta tesis son los siguientes: - Evaluar in vitro los efectos de una inhibición diferencial de cada una de las isoformas de AKT en una línea celular de adenocarcinoma de páncreas metastásico. - Caracterizar mediante proteomica cuantitativa diferencial los mecanismos de escape y adaptación de dichas células al silenciamiento individual de las isoformas de AKT. - Estudiar tanto in vitro como in vivo la posible sinergia entre la inhibición de AKT y terapias dirigidas frente a las principales rutas de escape detectadas por los estudios de proteomica cuantitativa.
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    Early detection of hyperprogressive disease in non-small cell lung cancer by monitoring of systemic T cell dynamics
    (MDPI, 2020) Arasanz Esteban, Hugo; Zuazo Ibarra, Miren; Bocanegra Gondán, Ana Isabel; Gato Cañas, María; Martínez Aguillo, Maite; Morilla Ruiz, Idoia; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Hyperprogressive disease (HPD) is an adverse outcome of immunotherapy consisting of an acceleration of tumor growth associated with prompt clinical deterioration. The definitions based on radiological evaluation present important technical limitations. No biomarkers have been identified yet. In this study, 70 metastatic NSCLC patients treated with anti-PD-1/PD-L1 immunotherapy after progression to platinum-based therapy were prospectively studied. Samples from peripheral blood were obtained before the first (baseline) and second cycles of treatment. Peripheral blood mononuclear cells (PBMCs) were isolated and differentiation stages of CD4 lymphocytes quantified by flow cytometry and correlated with HPD as identified with radiological criteria. A strong expansion of highly differentiated CD28− CD4 T lymphocytes (CD4 THD) between the first and second cycle of therapy was observed in HPD patients. After normalizing, the proportion of posttreatment/pretreatment CD4 THD was significantly higher in HPD when compared with the rest of patients (median 1.525 vs. 0.990; p = 0.0007), and also when stratifying by HPD, non-HPD progressors, and responders (1.525, 1.000 and 0.9700 respectively; p = 0.0025). A cutoff value of 1.3 identified HPD with 82% specificity and 70% sensitivity. An increase of CD28− CD4 T lymphocytes ≥ 1.3 (CD4 THD burst) was significantly associated with HPD (p = 0.008). The tumor growth ratio (TGR) was significantly higher in patients with expansion of CD4 THD burst compared to the rest of patients (median 2.67 vs. 0.86, p = 0.0049), and also when considering only progressors (median 2.67 vs. 1.03, p = 0.0126). A strong expansion of CD28− CD4 lymphocytes in peripheral blood within the first cycle of therapy is an early differential feature of HPD in NSCLC treated with immune-checkpoint inhibitors. The monitoring of T cell dynamics allows the early detection of this adverse outcome in clinical practice and complements radiological evaluation.
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    Hiperprogresión en carcinoma no microcítico de pulmón
    (2024) Fontecha Muñoz, Olga; Alsena Maqueda, María; Arasanz Esteban, Hugo; Escuela Técnica Superior de Ingeniería Agronómica y Biociencias; Nekazaritzako Ingeniaritzako eta Biozientzietako Goi Mailako Eskola Teknikoa
    La hiperprogresión es un tipo de respuesta adversa a la inmunoterapia que consiste en la aceleración del crecimiento tumoral desencadenada por el propio tratamiento. El estudio de este proceso resulta de gran importancia para dilucidar numerosos aspectos subyacentes que se mantienen desconocidos en la actualidad. Se busca un método que permita abordar dos de los principales problemas que plantea este fenómeno: la identificación de pacientes hiperprogresadores que reciben inmunoterapia en primera línea de tratamiento y la determinación de las características clínicas basales asociadas con mayor riesgo. Para ello, se han evaluado las características clínicas y radiológicas de los pacientes hiperprogresadores en segunda línea de tratamiento, para los cuales sí que se han propuesto criterios para la identificación. Se han analizado los elementos específicos de dichos pacientes con el objetivo de constatar si también permiten reconocer a los pacientes que sufren hiperprogresión en primera línea. En cuanto a las características clínicas se han evaluado las posibles correlaciones entre algunas de ellas y un mayor riesgo de hiperprogresión, pero no se ha encontrado ninguna evidencia que sugiera asociación de manera manifiesta dentro de la cohorte de segunda línea. Los resultados sugieren que sólo un valor de TGR (tumor growth rate) durante el tratamiento superior a 15,55 es válido para la identificación de la hiperprogresión en primera línea. Además, su relación significativa con una tasa de supervivencia libre de progresión inferior a 6,5 semanas indica que este límite podría ser aplicado en algunos casos. Dado el reducido número de pacientes evaluados, sería recomendable contrastar estos resultados en una cohorte de pacientes mayor.
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    Immune profiling uncovers memory T-cell responses with a Th17 signature in cancer patients with previous SARS-CoV-2 infection followed by mRNA vaccination
    (MDPI, 2022) Echaide Górriz, Míriam; Labiano, Ibone; Delgado, Marina; Fernández de Lascoiti, Ángela; Ochoa, Patricia; Garnica, Maider; Ramos, Pablo; Chocarro de Erauso, Luisa; Fernández Rubio, Leticia; Arasanz Esteban, Hugo; Bocanegra Gondán, Ana Isabel; Blanco, Ester; Piñeiro Hermida, Sergio; Morente Sancho, Pilar; Vera García, Ruth; Alsina, María; Escors Murugarren, David; Kochan, Grazyna; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    It is unclear whether patients with cancer present inherently impaired responses to COVID-19 and vaccination due to their treatments, neoplastic diseases or both. To address this question, immune profiling was performed in three cohorts of healthy donors and oncologic patients: infected with SARS-CoV-2, BNT162b2-vaccinated, and with previous COVID-19 disease and subsequently vaccinated. Cancer patients showed good antibody responses to vaccination, but poor induction of T-cell responses towards the S protein when compared to infection. Following natural infection, the major targets for T-cells were the SARS-CoV-2 structural proteins M and S, but not the N protein. Similar to antibody titers, the T-cell responses quickly decayed after six months post-vaccination. Significant memory T-cell expansion was observed in vaccinated donors only if previously diagnosed with COVID-19 before undergoing vaccination. Oncologic patients with previous COVID-19 followed by vaccination exhibited potent IL-17+ CD4 and CD8 T-cell responses and elevated numbers of circulating neutrophils in peripheral blood. © 2022 by the authors.
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    Leading edge: intratumor delivery of monoclonal antibodies for the treatment of solid tumors
    (MDPI, 2023) Blanco, Ester; Chocarro de Erauso, Luisa; Fernández Rubio, Leticia; Bocanegra Gondán, Ana Isabel; Arasanz Esteban, Hugo; Echaide Górriz, Míriam; Garnica, Maider; Piñeiro Hermida, Sergio; Kochan, Grazyna; Escors Murugarren, David; Ciencias de la Salud; Osasun Zientziak
    Immunotherapies based on immune checkpoint blockade have shown remarkable clinical outcomes and durable responses in patients with many tumor types. Nevertheless, these therapies lack efficacy in most cancer patients, even causing severe adverse events in a small subset of patients, such as inflammatory disorders and hyper-progressive disease. To diminish the risk of developing serious toxicities, intratumor delivery of monoclonal antibodies could be a solution. Encouraging results have been shown in both preclinical and clinical studies. Thus, intratumor immunotherapy as a new strategy may retain efficacy while increasing safety. This approach is still an exploratory frontier in cancer research and opens up new possibilities for next-generation personalized medicine. Local intratumor delivery can be achieved through many means, but an attractive approach is the use of gene therapy vectors expressing mAbs inside the tumor mass. Here, we summarize basic, translational, and clinical results of intratumor mAb delivery, together with descriptions of non-viral and viral strategies for mAb delivery in preclinical and clinical development. Currently, this is an expanding research subject that will surely play a key role in the future of oncology.
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    Molecular mechanisms of programmed cell death-1 dependent T cell suppression: relevance for immunotherapy
    (AME Publishing, 2017) Zuazo Ibarra, Miren; Gato Cañas, María; Llorente, Noelia; Ibañez Vea, María; Arasanz Esteban, Hugo; Kochan, Grazyna; Escors Murugarren, David; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Programmed cell death-1 (PD1) has become a significant target for cancer immunotherapy. PD1 and its receptor programmed cell death 1 ligand 1 (PDL1) are key regulatory physiological immune checkpoints that maintain self-tolerance in the organism by regulating the degree of activation of T and B cells amongst other immune cell types. However, cancer cells take advantage of these immunosuppressive regulatory mechanisms to escape T and B cell-mediated immunity. PD1 engagement on T cells by PDL1 on the surface of cancer cells dramatically interferes with T cell activation and the acquisition of effector capacities. Interestingly, PD1-targeted therapies have demonstrated to be highly effective in rescuing T cell anti-tumor effector functions. Amongst these the use of anti-PD1/PDL1 monoclonal antibodies are particularly efficacious in human therapies. Furthermore, clinical findings with PD1/PDL1 blockers over several cancer types demonstrate clinical benefit. Despite the successful results, the molecular mechanisms by which PD1-targeted therapies rescue T cell functions still remain elusive. Therefore, it is a key issue to uncover the molecular pathways by which these therapies exert its function in T cells. A profound knowledge of PDL1/PD1 mechanisms will surely uncover a new array of targets susceptible of therapeutic intervention. Here, we provide an overview of the molecular events underlying PD1-dependent T cell suppression in cancer.
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    The multi-specific VH-based Humabody CB213 co-targets PD1 and LAG3 on T cells to promote anti-tumour activity
    (Springer Nature, 2021) Edwards, Carolyn J.; Sette, Angelica; Cox, Carl; Di Fiore, Barabara; Wyre, Chris; Sydoruk, Daniela; Yadin, David; Hayes, Philip; Stelter, Szymon; Bartlett, Phillip D.; Zuazo Ibarra, Miren; García Granda, María Jesús; Benedetti, Giovanni; Fiaska, Stratonik; Birkett, Neil R.; Teng, Yumin; Enever, Carrie; Arasanz Esteban, Hugo; Bocanegra Gondán, Ana Isabel; Chocarro de Erauso, Luisa; Fernández Hinojal, Gonzalo; Vera García, Ruth; Archer, Bethan; Osuch, Isabelle; Lewandowska, Martyna; Surani, Yasmin M.; Kochan, Grazyna; Escors Murugarren, David; Legg, James; Pierce, Andrew J.; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    Background: improving cancer immunotherapy long-term clinical benefit is a major priority. It has become apparent that multiple axes of immune suppression restrain the capacity of T cells to provide anti-tumour activity including signalling through PD1/PD-L1 and LAG3/MHC-II. Methods: CB213 has been developed as a fully human PD1/LAG3 co-targeting multi-specific Humabody composed of linked VH domains that avidly bind and block PD1 and LAG3 on dual-positive T cells. We present the preclinical primary pharmacology of CB213: biochemistry, cell-based function vs. immune-suppressive targets, induction of T cell proliferation ex vivo using blood obtained from NSCLC patients, and syngeneic mouse model anti-tumour activity. CB213 pharmacokinetics was assessed in cynomolgus macaques. Results: CB213 shows picomolar avidity when simultaneously engaging PD1 and LAG3. Assessing LAG3/MHC-II or PD1/PD-L1 suppression individually, CB213 preferentially counters the LAG3 axis. CB213 showed superior activity vs. αPD1 antibody to induce ex vivo NSCLC patient T cell proliferation and to suppress tumour growth in a syngeneic mouse tumour model, for which both experimental systems possess PD1 and LAG3 suppressive components. Non-human primate PK of CB213 suggests weekly clinical administration. Conclusions: CB213 is poised to enter clinical development and, through intercepting both PD1 and LAG3 resistance mechanisms, may benefit patients with tumours escaping front-line immunological control.
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    Oleuropein-driven reprogramming of the myeloid cell compartment to sensitise tumours to PD-1/PD-L1 blockade strategies
    (Springer Nature, 2024) Blanco, Ester; Silva-Pilipich, Noelia; Bocanegra Gondán, Ana Isabel; Chocarro de Erauso, Luisa; Procopio, Antonio; Ausín, Karina; Fernández Irigoyen, Joaquín; Fernández Rubio, Leticia; Razquin, Nerea; Igea, Ana; Garnica, Maider; Echaide Górriz, Míriam; Arasanz Esteban, Hugo; Vera García, Ruth; Escors Murugarren, David; Smerdou, Cristian; Kochan, Grazyna; Ciencias de la Salud; Osasun Zientziak
    Background: Previous studies have shown that functional systemic immunity is required for the efficacy of PD-1/PD-L1 blockade immunotherapies in cancer. Hence, systemic reprogramming of immunosuppressive dysfunctional myeloid cells could overcome resistance to cancer immunotherapy. Methods: Reprogramming of tumour-associated myeloid cells with oleuropein was studied by quantitative differential proteomics, phenotypic and functional assays in mice and lung cancer patients. Combinations of oleuropein and two different delivery methods of anti-PD-1 antibodies were tested in colorectal cancer tumour models and in immunotherapy-resistant lung cancer models. Results: Oleuropein treatment reprogrammed monocytic and granulocytic myeloid-derived suppressor cells, and tumour-associated macrophages towards differentiation of immunostimulatory subsets. Oleuropein regulated major differentiation programmes associated to immune modulation in myeloid cells, which potentiated T cell responses and PD-1 blockade. PD-1 antibodies were delivered by two different strategies, either systemically or expressed within tumours using a self-amplifying RNA vector. Combination anti-PD-1 therapies with oleuropein increased tumour infiltration by immunostimulatory dendritic cells in draining lymph nodes, leading to systemic antitumour T cell responses. Potent therapeutic activities were achieved in colon cancer and lung cancer models resistant to immunotherapies, even leading to complete tumour regression. Discussion: Oleuropein significantly improves the outcome of PD-1/PD-L1 blockade immunotherapy strategies by reprogramming myeloid cells.
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    PD-1/LAG-3 co-signaling profiling uncovers CBL ubiquitin ligases as key immunotherapy targets
    (EMBO Press, 2024-07-19) Chocarro de Erauso, Luisa; Blanco, Ester; Fernández-Rubio, Leticia; Garnica, Maider; Zuazo Ibarra, Miren; García Granda, María Jesús; Bocanegra Gondán, Ana Isabel; Echaide Górriz, Míriam; Johnston, Colette; Edwards, Carolyn J.; Legg, James; Pierce, Andrew J.; Arasanz Esteban, Hugo; Fernández Hinojal, Gonzalo; Vera García, Ruth; Ausín, Karina; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Kochan, Grazyna; Escors Murugarren, David; Ciencias de la Salud; Osasun Zientziak
    Many cancer patients do not benefit from PD-L1/PD-1 blockade immunotherapies. PD-1 and LAG-3 co-upregulation in T-cells is one of the major mechanisms of resistance by establishing a highly dysfunctional state in T-cells. To identify shared features associated to PD-1/LAG-3 dysfunctionality in human cancers and T-cells, multiomic expression profiles were obtained for all TCGA cancers immune infiltrates. A PD-1/LAG-3 dysfunctional signature was found which regulated immune, metabolic, genetic, and epigenetic pathways, but especially a reinforced negative regulation of the TCR signalosome. These results were validated in T-cell lines with constitutively active PD-1, LAG-3 pathways and their combination. A differential analysis of the proteome of PD-1/LAG-3 T-cells showed a specific enrichment in ubiquitin ligases participating in E3 ubiquitination pathways. PD-1/LAG-3 co-blockade inhibited CBL-B expression, while the use of a bispecific drug in clinical development also repressed C-CBL expression, which reverted T-cell dysfunctionality in lung cancer patients resistant to PD-L1/PD-1 blockade. The combination of CBL-B-specific small molecule inhibitors with anti-PD-1/anti-LAG-3 immunotherapies demonstrated notable therapeutic efficacy in models of lung cancer refractory to immunotherapies, overcoming PD-1/LAG-3 mediated resistance. © The Author(s) 2024.
  • Loading...
    Thumbnail Image
    PublicationOpen Access
    PD-L1 expression in systemic immune cell populations as a potential predictive biomarker of responses to PD-L1/PD-1 blockade therapy in lung cancer
    (MDPI, 2019) Bocanegra Gondán, Ana Isabel; Fernández Hinojal, Gonzalo; Zuazo Ibarra, Miren; Arasanz Esteban, Hugo; García Granda, María Jesús; Hernández, Carlos; Ibañez Vea, María; Hernandez Marin, Berta; Martínez Aguillo, Maite; Lecumberri, María José; Fernández de Lascoiti, Ángela; Teijeira, Lucía; Morilla Ruiz, Idoia; Vera García, Ruth; Escors Murugarren, David; Kochan, Grazyna; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    PD-L1 tumor expression is a widely used biomarker for patient stratification in PD-L1/PD-1 blockade anticancer therapies, particularly for lung cancer. However, the reliability of this marker is still under debate. Moreover, PD-L1 is widely expressed by many immune cell types, and little is known on the relevance of systemic PD-L1+ cells for responses to immune checkpoint blockade. We present two clinical cases of patients with non-small cell lung cancer (NSCLC) and PD-L1-negative tumors treated with atezolizumab that showed either objective responses or progression. These patients showed major differences in the distribution of PD-L1 expression within systemic immune cells. Based on these results, an exploratory study was carried out with 32 cases of NSCLC patients undergoing PD-L1/PD-1 blockade therapies, to compare PD-L1 expression profiles and their relationships with clinical outcomes. Significant differences in the percentage of PD-L1+ CD11b+ myeloid cell populations were found between objective responders and non-responders. Patients with percentages of PD-L1+ CD11b+ cells above 30% before the start of immunotherapy showed response rates of 50%, and 70% when combined with memory CD4 T cell profiling. These findings indicate that quantification of systemic PD-L1+ myeloid cell subsets could provide a simple biomarker for patient stratification, even if biopsies are scored as PD-L1 null
  • Loading...
    Thumbnail Image
    PublicationUnknown
    PD1 signal transduction pathways in T cells
    (Impact Journals, 2017) Arasanz Esteban, Hugo; Gato Cañas, María; Zuazo Ibarra, Miren; Ibañez Vea, María; Breckpot, Karine; Kochan, Grazyna; Escors Murugarren, David; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    The use of immune checkpoint inhibitors for the treatment of cancer is revolutionizing oncology. Amongst these therapeutic agents, antibodies that block PD-L1/PD1 interactions between cancer cells and T cells are demonstrating high efficacies and low toxicities. Despite all the recent advances, very little is yet known on the molecular intracellular signaling pathways regulated by either PD-L1 or PD1. Here we review the current knowledge on PD1-dependent intracellular signaling pathways, and the consequences of disrupting PD1 signal transduction.
  • Loading...
    Thumbnail Image
    PublicationUnknown
    PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity
    (Elsevier, 2017) Gato Cañas, María; Zuazo Ibarra, Miren; Arasanz Esteban, Hugo; Ibañez Vea, María; Lorenzo, Laura; Fernández Hinojal, Gonzalo; Vera García, Ruth; Smerdou, Cristian; Martisova, Eva; Arozarena Martinicorena, Imanol; Wellbrock, Claudia; Llopiz, Diana; Ruiz, Marta; Sarobe, Pablo; Breckpot, Karine; Kochan, Grazyna; Escors Murugarren, David; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    PDL1 blockade produces remarkable clinical responses, thought to occur by T cell reactivation through prevention of PDL1-PD1 T cell inhibitory interactions. Here, we find that PDL1 cell-intrinsic signaling protects cancer cells from interferon (IFN) cytotoxicity and accelerates tumor progression. PDL1 inhibited IFN signal transduction through a conserved class of sequence motifs that mediate crosstalk with IFN signaling. Abrogation of PDL1 expression or antibody-mediated PDL1 blockade strongly sensitized cancer cells to IFN cytotoxicity through a STAT3/caspase-7-dependent pathway. Moreover, somatic mutations found in human carcinomas within these PDL1 sequence motifs disrupted motif regulation, resulting in PDL1 molecules with enhanced protective activities from type I and type II IFN cytotoxicity. Overall, our results reveal a mode of action of PDL1 in cancer cells as a first line of defense against IFN cytotoxicity.
  • Loading...
    Thumbnail Image
    PublicationUnknown
    Profound reprogramming towards stemness in pancreatic cancer cells as adaptation to AKT inhibition
    (MDPI, 2020) Arasanz Esteban, Hugo; Hernández, Carlos; Bocanegra Gondán, Ana Isabel; Chocarro de Erauso, Luisa; Zuazo Ibarra, Miren; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    Cancer cells acquire resistance to cytotoxic therapies targeting major survival pathways by adapting their metabolism. The AKT pathway is a major regulator of human pancreatic adenocarcinoma progression and a key pharmacological target. The mechanisms of adaptation to long-term silencing of AKT isoforms of human and mouse pancreatic adenocarcinoma cancer cells were studied. Following silencing, cancer cells remained quiescent for long periods of time, after which they recovered proliferative capacities. Adaptation caused profound proteomic changes largely affecting mitochondrial biogenesis, energy metabolism and acquisition of a number of distinct cancer stem cell (CSC) characteristics depending on the AKT isoform that was silenced. The adaptation to AKT1 silencing drove most de-differentiation and acquisition of stemness through C-MYC down-modulation and NANOG upregulation, which were required for survival of adapted CSCs. The changes associated to adaptation sensitized cancer cells to inhibitors targeting regulators of oxidative respiration and mitochondrial biogenesis. In vivo pharmacological co-inhibition of AKT and mitochondrial metabolism effectively controlled pancreatic adenocarcinoma growth in pre-clinical models.
  • Loading...
    Thumbnail Image
    PublicationUnknown
    A proteomic atlas of lineage and cancer-polarized expression modules in myeloid cells modeling immunosuppressive tumor-infiltrating subsets
    (MDPI, 2021) Blanco, Ester; Ibañez Vea, María; Hernández, Carlos; Drici, Lylia; Martínez de Morentin Iribarren, Xabier; Gato Cañas, María; Ausín, Karina; Bocanegra Gondán, Ana Isabel; Zuazo Ibarra, Miren; Chocarro de Erauso, Luisa; Arasanz Esteban, Hugo; Fernández Hinojal, Gonzalo; Fernández Irigoyen, Joaquín; Smerdou, Cristian; Garnica, Maider; Echaide Górriz, Míriam; Fernández Rubio, Leticia; Morente Sancho, Pilar; Ramos-Castellanos, Pablo; Llopiz, Diana; Santamaría Martínez, Enrique; Larsen, Martin R.; Escors Murugarren, David; Kochan, Grazyna; Osasun Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias de la Salud; Gobierno de Navarra / Nafarroako Gobernua
    Monocytic and granulocytic myeloid-derived suppressor cells together with tumor-infiltrating macrophages constitute the main tumor-infiltrating immunosuppressive myeloid populations. Due to the phenotypic resemblance to conventional myeloid cells, their identification and purification from within the tumors is technically difficult and makes their study a challenge. We differentiated myeloid cells modeling the three main tumor-infiltrating types together with uncommitted macrophages, using ex vivo differentiation methods resembling the tumor microenvironment. The phenotype and proteome of these cells was compared to identify linage-dependent relationships and cancer-specific interactome expression modules. The relationships between monocytic MDSCs and TAMs, monocytic MDSCs and granulocytic MDSCs, and hierarchical relationships of expression networks and transcription factors due to lineage and cancer polarization were mapped. Highly purified immunosuppressive myeloid cell populations that model tumor-infiltrating counterparts were systematically analyzed by quantitative proteomics. Full functional interactome maps have been generated to characterize at high resolution the relationships between the three main myeloid tumor-infiltrating cell types. Our data highlights the biological processes related to each cell type, and uncover novel shared and differential molecular targets. Moreover, the high numbers and fidelity of ex vivo-generated subsets to their natu-ral tumor-shaped counterparts enable their use for validation of new treatments in high-throughput experiments.
  • Loading...
    Thumbnail Image
    PublicationUnknown
    Resistance training and clinical status in patients with postdischarge symptoms after COVID-19: protocol for a randomized controlled crossover trial 'The EXER-COVID Crossover Study'.
    (BMC, 2022) Ramírez Vélez, Robinson; Oteiza Olaso, Julio; Casas Fernández de Tejerina, Juan Manuel; García Alonso, Nora; Legarra Gorgoñón, Gaizka; Oscoz Ochandorena, Sergio; Arasanz Esteban, Hugo; García Alonso, Yesenia; Correa Rodríguez, María; Izquierdo Redín, Mikel; Ciencias de la Salud; Osasun Zientziak
    Background: physical exercise induces a coordinated response of multiple organ systems, including the immune system. In fact, it has been proposed that physical exercise may modulate the immune system. However, the potential effect of an exercise program on COVID-19 survivors has not been investigated. Thus, the aim of this study is to evaluate the modifications in immunological parameters, physical condition, inflammatory profile, and perceived persistent symptoms after 6 weeks of supervised resistance training (RT), in addition to the standard care on the clinical status of patients with persistent COVID-19 symptoms. The objective of this protocol is to describe the scientific rationale in detail and to provide information about the study procedures. Methods/design: a total of 100 patients with postdischarge symptoms after COVID-19 will be randomly allocated into either a group receiving standard care (control group) or a group performing a multicomponent exercise program two times a week over a period of 6 weeks. The main hypothesis is that a 6-week multicomponent exercise program (EXER-COVID Crossover Study) will improve the immunological and inflammatory profile, physical condition, and persistent perceived symptoms (fatigue/tiredness, musculoskeletal pain, and shortness of breath) in patients with postdischarge symptoms after COVID-19. Discussion: our results will provide insights into the effects of a multicomponent exercise program on immunological parameters, physical condition, inflammatory profile, and persistent perceived symptoms in patients with postdischarge symptoms after COVID-19. Information obtained by this study will inform future guidelines on the exercise training rehabilitation of patients with postdischarge symptoms after COVID-19.
  • Loading...
    Thumbnail Image
    PublicationUnknown
    Systemic blood immune cell populations as biomarkers for the outcome of immune checkpoint inhibitor therapies
    (MDPI, 2020) Hernández, Carlos; Arasanz Esteban, Hugo; Chocarro de Erauso, Luisa; Bocanegra Gondán, Ana Isabel; Zuazo Ibarra, Miren; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    The development of cancer immunotherapy in the last decade has followed a vertiginous rhythm. Nowadays, immune checkpoint inhibitors (ICI) which include anti-CTLA4, anti-PD-1 and anti-PD-L1 antibodies are in clinical use for the treatment of numerous cancers. However, approximately only a third of the patients benefit from ICI therapies. Many efforts have been made for the identification of biomarkers allowing patient stratification into potential responders and progressors before the start of ICI therapies or for monitoring responses during treatment. While much attention is centered on biomarkers from the tumor microenvironment, in many cases biopsies are not available. The identification of systemic immune cell subsets that correlate with responses could provide promising biomarkers. Some of them have been reported to influence the response to ICI therapies, such as proliferation and activation status of CD8 and CD4 T cells, the expression of immune checkpoints in peripheral blood cells and the relative numbers of immunosuppressive cells such as regulatory T cells and myeloid-derived suppressor cells. In addition, the profile of soluble factors in plasma samples could be associated to response or tumor progression. Here we will review the cellular subsets associated to response or progression in different studies and discuss their accuracy in diagnosis.
  • «
  • 1 (current)
  • 2
  • »
Con la colaboración del Ministerio de Ciencia e Innovación y de la Fundación Española para la Ciencia y la Tecnología (FECYT).

© Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa

  • Aviso legal
  • Protección de datos
  • Sugerencias
  • Contacto: academica-e@unavarra.es, +34 948 16 89 73, +34 948 16 89 74
  • Powered by DSpace