Dpto. Estadística, Informática y Matemáticas - Estatistika, Informatika eta Matematika Saila [desde mayo 2018 / 2018ko maiatzetik]
Permanent URI for this community
Véase además departamentos anteriores a mayo 2018 / Ikus, halaber, 2018ko maiatza baino lehenagoko sailak
Dpto. Automática y Computación - Automatika eta Konputazioa Saila
Dpto. Estadística e Investigación Operativa - Estatistika eta Ikerketa Operatiboa Saila
Dpto. Ingeniería Matemática e Informática - Matematika eta Informatika Ingeniaritza Saila
Dpto. Matemáticas - Matematika Saila
Browse
Browsing Dpto. Estadística, Informática y Matemáticas - Estatistika, Informatika eta Matematika Saila [desde mayo 2018 / 2018ko maiatzetik] by Department/Institute "Ingeniaritza"
Now showing 1 - 17 of 17
Results Per Page
Sort Options
Publication Open Access Análisis espacio-temporal de los accidentes mortales con tractor en España durante el período 2010-2019(Interempresas Media, 2023) Arazuri Garín, Silvia; Ibarrola, Alicia; Mangado Ederra, Jesús; Adin Urtasun, Aritz; Arnal Atarés, Pedro; López Maestresalas, Ainara; Jarén Ceballos, Carmen; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; IngeniaritzaEl sector agrario y el de la construcción son los que presentan los índices de incidencia de accidentes de trabajo mortales más altos de nuestro país, según los datos recogidos por el Instituto Nacional de Seguridad y Salud en el Trabajo (INSST) (2021) dependiente del Ministerio de Trabajo y Economía Social (Cirauqui, 2022). Si tenemos en cuenta la evolución de estos índices, el sector agrario es el único que no ha mejorado dicho índice desde la aparición de la Ley 31/1995 de prevención de riesgos laborales y su siniestralidad continúa aumentando (Fundación Mapfre 2020). Pero, ¿qué ocurre cuando el accidente lo sufren personas que no encajan en la definición legal de trabajador? Estos accidentes no son considerados 'accidente de trabajo' y, por tanto, escapan a todas las estadísticas y datos oficiales del INSST. Este suele ser el caso de muchos accidentes que sufren personas jubiladas, menores de 16 años, familiares colaboradores, etc. que no son personas vinculadas a la actividad laboral tal y como se define en la legislación. Según Arana et al. (2010) de un total de 388 accidentes mortales ocurridos en España con maquinaria agrícola durante los años 2004-2008, solamente el 61,85% de ellos tuvieron carácter oficial. Las personas mayores fueron el sector de la población con un mayor riesgo, seguidos de los niños y las personas ajenas al sector agrario. La mayoría de las muertes fueron debidas al vuelco de tractores sin estructuras de protección.Publication Open Access Applications of sensing for disease detection(Springer, 2021) Castro, Ana Isabel de; Pérez Roncal, Claudia; Thomasson, J. Alex; Ehsani, Reza; López Maestresalas, Ainara; Yang, Chenghai; Jarén Ceballos, Carmen; Wang, Tianyi; Cribben, Curtis; Marín Ederra, Diana; Isakeit, Thomas; Urrestarazu Vidart, Jorge; López Molina, Carlos; Wang, Xiwei; Nichols, Robert L.; Santesteban García, Gonzaga; Arazuri Garín, Silvia; Peña, José Manuel; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe potential loss of world crop production from the effect of pests, including weeds, animal pests, pathogens and viruses has been quantifed as around 40%. In addition to the economic threat, plant diseases could have disastrous consequences for the environment. Accurate and timely disease detection requires the use of rapid and reliable techniques capable of identifying infected plants and providing the tools required to implement precision agriculture strategies. The combination of suitable remote sensing (RS) data and advanced analysis algorithms makes it possible to develop prescription maps for precision disease control. This chapter shows some case studies on the use of remote sensing technology in some of the world’s major crops; namely cotton, avocado and grapevines. In these case studies, RS has been applied to detect disease caused by fungi using different acquisition platforms at different scales, such as leaf-level hyperspectral data and canopy-level remote imagery taken from satellites, manned airplanes or helicopter, and UAVs. The results proved that remote sensing is useful, effcient and effective for identifying cotton root rot zones in cotton felds, laurel wilt-infested avocado trees and escaaffected vines, which would allow farmers to optimize inputs and feld operations, resulting in reduced yield losses and increased profts.Publication Open Access Automatic detection of high-voltage power lines in LiDAR surveys using data mining techniques(Springer, 2020) Chasco Hernández, Daniel; Sanz Delgado, José Antonio; García Morales, Víctor; Álvarez-Mozos, Jesús; Ingeniería; Estadística, Informática y Matemáticas; Ingeniaritza; Estatistika, Informatika eta MatematikaThe correct classification of power lines in LiDAR point clouds has attracted the interest of the mapping community in the last years. The objective of this research is the detection and automatic extraction of high-voltage transmission lines from LiDAR data using data mining techniques. With this aim, a Single Photon LiDAR (SPL) survey acquired over the region of Navarre (Spain) in 2017 was used, with a mean point density of 14 pt/m2. Different data mining techniques were evaluated, including decision trees (C4.5 and CART) and ensemble learning algorithms (Random Forests, Bagging and AdaBoost). Fifteen test sites were studied corresponding to areas with high-voltage power lines over different conditions regarding the underlying vegetation and topography. For these sites 92,104 LiDAR points were identified as power lines and more than 4M points as not power lines using existing cartography. This dataset was randomly split in train and test sets and then balanced two obtain a similar amount of data for the two classes. The results obtained show the importance of balancing the training data with improvements in accuracy of ~10% with respect to the imbalanced case. Accuracies higher than 87% were obtained in all balanced cases, with particularly successful results for ensemble learning techniques, being AdaBoost the technique with the highest accuracy 91%. These results suggest that the combination of SPL surveys and data mining tools can be successfully used for the operational mapping of high voltage power lines.Publication Open Access Cátedra Mujer, Ciencia y Tecnología de la UPNA(Gobierno de Navarra, 2023) Aranguren Garacochea, Patricia; Barrenechea Tartas, Edurne; Catalán Ros, Leyre; Díaz Lucas, Silvia; Jurío Munárriz, Aránzazu; Martínez Ramírez, Alicia; Millor Muruzábal, Nora; Gómez Fernández, Marisol; San Martín Biurrun, Idoia; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2La Cátedra Mujer, Ciencia y Tecnología de la Universidad Pública de Navarra (UPNA) tiene como objetivo aumentar la participación de las mujeres en campos de ciencia y tecnología. La cultura y la divulgación científicas son el eje principal de la actividad de la Cátedra. Dicha actividad engloba: la representación teatral Yo quiero ser científica, talleres experimentales y conferencias y exposiciones para todos los públicos y edades. Más de 6000 personas han visto la obra de teatro, más de 1500 estudiantes de ESO han participado en los talleres y el material audiovisual ha recibido más de 20000 visitas.Publication Embargo D-optimal strain sensor placement for mechanical load estimation in the presence of nuisance loads and thermal strain(Elsevier, 2025-02-01) Iriarte Goñi, Xabier; Bacaicoa Díaz, Julen; Aginaga García, Jokin; Plaza Puértolas, Aitor; Szczepanska-Álvarez, Anna; Ingeniería; Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaThe measurement of loads in circular cross-section geometries using strain gauges or other types of strain sensors is well-known in the field of mechanical engineering. Typical stress measurement configurations use 4 strain sensors strategically placed on the surface of the shaft and connected in the form of a complete Wheatstone bridge. Thus, 4 strain sensors are used to estimate each of the six load components to which a shaft may be subjected. Some typical configurations are designed to compensate for temperature effects, making them robust to temperature changes. Despite being used for decades, there is no record of any algorithm that serves to calculate these configurations, demonstrate that they are optimal or determine new configurations with other requirements. In this article, an algorithm is developed that allows calculating the optimal configurations of strain sensors to estimate one or several load components, compensating for the effect of other loads and temperature variations. This algorithm is based on the measurement of the strain of each gauge using Wheatstone quarter bridges and uses the same set of sensors for the estimation of various load components. The results are two-fold: on the one hand the traditional configurations are shown to be optimal and on the other hand a series of additional optimal configurations are obtained to estimate various sets of load components compensating for the influence of the rest. Additionally, a means of calculating the estimation variance of the loads of interest is provided.Publication Open Access Evaluation of near-infrared hyperspectral imaging for the assessment of potato processing aptitude(Frontiers Media, 2022) López Maestresalas, Ainara; López Molina, Carlos; Oliva Lobo, Gil Alfonso; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Peraza Alemán, Carlos Miguel; Arazuri Garín, Silvia; Ingeniaritza; Estatistika, Informatika eta Matematika; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Estadística, Informática y MatemáticasThe potato (Solanum tuberosum L.) is the world's fifth most important staple food with high socioeconomic relevance. Several potato cultivars obtained by selection and crossbreeding are currently on the market. This diversity causes tubers to exhibit different behaviors depending on the processing to which they are subjected. Therefore, it is interesting to identify cultivars with specific characteristics that best suit consumer preferences. In this work, we present a method to classify potatoes according to their cooking or frying as crisps aptitude using NIR hyperspectral imaging (HIS) combined with a Partial Least Squares Discriminant Analysis (PLS-DA). Two classification approaches were used in this study. First, a classification model using the mean spectra of a dataset composed of 80 tubers belonging to 10 different cultivars. Then, a pixel-wise classification using all the pixels of each sample of a small subset of samples comprised of 30 tubers. Hyperspectral images were acquired using fresh-cut potato slices as sample material placed on a mobile platform of a hyperspectral system in the NIR range from 900 to 1,700 nm. After image processing, PLS-DA models were built using different pre-processing combinations. Excellent accuracy rates were obtained for the models developed using the mean spectra of all samples with 90% of tubers correctly classified in the external dataset. Pixel-wise classification models achieved lower accuracy rates between 66.62 and 71.97% in the external validation datasets. Moreover, a forward interval PLS (iPLS) method was used to build pixel-wise PLS-DA models reaching accuracies above 80 and 71% in cross-validation and external validation datasets, respectively. Best classification result was obtained using a subset of 100 wavelengths (20 intervals) with 71.86% of pixels correctly classified in the validation dataset. Classification maps were generated showing that false negative pixels were mainly located at the edges of the fresh-cut slices while false positive were principally distributed at the central pith, which has singular characteristics.Publication Open Access Evaluation of R tools for downloading MODIS images and their use in urban growth analysis of the city of Tarija (Bolivia)(MDPI, 2022) Campero Taboada, Milton J.; Luquin Oroz, Eduardo Adrián; Montesino San Martín, Manuel; González de Audícana Amenábar, María; Campo-Bescós, Miguel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe aim of this study was to compare the available tools in R for downloading and processing Moderate Resolution Imaging Spectroradiometer (MODIS) data, specifically the Enhanced Vegetation Index (EVI) product. The R tools evaluated were the MODIS package, RGISTools, MODISTools, R Google Earth Engine (RGEE) package, MODIStsp, and the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) application. Each tool was used to download the same product (EVI) corresponding to the same day (3 December 2015), and downloaded data were used to analyze the urban growth of Tarija (Bolivia) as an interesting application. The following features were analyzed: download time and memory used during the download, additional postprocessing time, local memory occupied on the computer, and downloaded file formats. Results showed that the most efficient R tools were those that work directly in the “cloud” or use text queries (RGEE and AppEEARS, respectively) and provide, as a final product, a cropped.tif image according to the area of interest.Publication Open Access Exploring the potential of hyperspectral imaging to detect Esca disease complex in asymptomatic grapevine leaves(Elsevier, 2022) Pérez Roncal, Claudia; Arazuri Garín, Silvia; López Molina, Carlos; Jarén Ceballos, Carmen; Santesteban García, Gonzaga; López Maestresalas, Ainara; Ingeniaritza; Estatistika, Informatika eta Matematika; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Estadística, Informática y Matemáticas; Agronomía, Biotecnología y Alimentación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaPrecise and reliable identification of specific plant diseases is a challenge within precision agriculture nowadays. This is the case of esca, a complex grapevine trunk disease, that represents a major threat to modern viticulture as it is responsible for large economic losses annually. The lack of effective control strategies and the complexity of esca disease expression make essential the identification of affected plants, before symptoms become evident, for a better management of the vineyard. This study evaluated the suitability of a near-infrared hyperspectral imaging (HSI) system to detect esca disease in asymptomatic grapevine leaves of Tempranillo red-berried cultivar. For this, 72 leaves from an experimental vineyard, naturally infected with esca, were collected and scanned with a lab-scale HSI system in the 900-1700 nm spectral range. Then, effective image processing and multivariate analysis techniques were merged to develop pixel-based classification models for the distinction of healthy, asymptomatic and symptomatic leaves. Automatic and interval partial least squares variable selection methods were tested to identify the most relevant wavelengths for the detection of esca-affected vines using partial least squares discriminant analysis and different pre-processing techniques. Three-class and two-class classifiers were carried out to differentiate healthy, asymptomatic and symptomatic leaf pixels, and healthy from asymptomatic pixels, respectively. Both variable selection methods performed similarly, achieving good classification rates in the range of 82.77-97.17% in validation datasets for either three-class or two-class classifiers. The latter results demonstrated the capability of hyperspectral imaging to distinguish two groups of seemingly identical leaves (healthy and asymptomatic). These findings would ease the annual monitoring of disease incidence in the vineyard and, therefore, better crop management and decision making.Publication Open Access Hyperspectral imaging to assess the presence of powdery mildew (Erysiphe necator) in cv. Carignan Noir grapevine bunches(MDPI, 2020) Pérez Roncal, Claudia; López Maestresalas, Ainara; López Molina, Carlos; Jarén Ceballos, Carmen; Urrestarazu Vidart, Jorge; Santesteban García, Gonzaga; Arazuri Garín, Silvia; Ingeniería; Estadística, Informática y Matemáticas; Agronomía, Biotecnología y Alimentación; Ingeniaritza; Estatistika, Informatika eta Matematika; Agronomia, Bioteknologia eta Elikadura; Gobierno de Navarra / Nafarroako Gobernua, Proyecto DECIVID (Res.104E/2017); Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, FPI-UPNA-2017 (Res.654/2017)Powdery mildew is a worldwide major fungal disease for grapevine, which adversely affects both crop yield and produce quality. Disease identification is based on visible signs of a pathogen once the plant has already been infected; therefore, techniques that allow objective diagnosis of the disease are currently needed. In this study, the potential of hyperspectral imaging (HSI) technology to assess the presence of powdery mildew in grapevine bunches was evaluated. Thirty Carignan Noir grape bunches, 15 healthy and 15 infected, were analyzed using a lab-scale HSI system (900–1700 nm spectral range). Image processing was performed to extract spectral and spatial image features and then, classification models by means of Partial Least Squares Discriminant Analysis (PLS-DA) were carried out for healthy and infected pixels distinction within grape bunches. The best discrimination was achieved for the PLS-DA model with smoothing (SM), Standard Normal Variate (SNV) and mean centering (MC) pre-processing combination, reaching an accuracy of 85.33% in the cross-validation model and a satisfactory classification and spatial location of either healthy or infected pixels in the external validation. The obtained results suggested that HSI technology combined with chemometrics could be used for the detection of powdery mildew in black grapevine bunches.Publication Open Access Initiative to increment the number of women in STEM degrees: women, science and technology chair of the Public University of Navarre(IEEE, 2020) Aranguren Garacochea, Patricia; San Martín Biurrun, Idoia; Catalán Ros, Leyre; Martínez Ramírez, Alicia; Jurío Munárriz, Aránzazu; Díaz Lucas, Silvia; Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Barrenechea Tartas, Edurne; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe Public University of Navarre joined with Navarre Government has created the Women, Science and Technology Chair. This chair arises due to the plummeting tendency of the percentage of women in STEM degrees with the aim of reversing this trend. The programme of activities is defined throughout this contribution by six activities: a Theatre Play, a Poster Award on Final Degree/Masters Project, The 1st Week of Women, Science and Technology, the Promotion of Technical Degrees in schools and high-schools, a Workshop about Gender Stereotypes and the Fostering of Women among Science and Environment. Each activity gained great success and the preset goals were highly accomplished, especially, the 1st Week of Women, Science and Technology activity. The latter achieved a great success both in participation and in repercussion, contributing to visualize the role of women in science and technology.Publication Open Access Interval subsethood measures with respect to uncertainty for the interval-valued fuzzy setting(Atlantis Press, 2020) Pekala, Barbara; Bentkowska, Urszula; Sesma Sara, Mikel; Fernández Fernández, Francisco Javier; Lafuente López, Julio; Altalhi, A. H.; Knap, Maksymilian; Bustince Sola, Humberto; Pintor Borobia, Jesús María; Estatistika, Informatika eta Matematika; Ingeniaritza; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; IngenieríaIn this paper, the problem of measuring the degree of subsethood in the interval-valued fuzzy setting is addressed. Taking into account the widths of the intervals, two types of interval subsethood measures are proposed. Additionally, their relation and main properties are studied. These developments are made both with respect to the regular partial order of intervals and with respect to admissible orders. Finally, some construction methods of the introduced interval subsethood measures with the use interval-valued aggregation functions are examined.Publication Open Access The law of O-conditionality for fuzzy implications constructed from overlap and grouping functions(Elsevier, 2019) Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Fernández Fernández, Francisco Javier; Sesma Sara, Mikel; Pintor Borobia, Jesús María; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Ingeniaritza; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; IngenieríaOverlap and grouping functions are special kinds of non necessarily associative aggregation operators proposed for many applications, mainly when the associativity property is not strongly required. The classes of overlap and grouping functions are richer than the classes of t-norms and t-conorms, respectively, concerning some properties like idempotency, homogeneity, and, mainly, the self-closedness feature with respect to the convex sum and the aggregation by generalized composition of overlap/grouping functions. In previous works, we introduced some classes of fuzzy implications derived by overlap and/or grouping functions, namely, the residual implications R-0-implications, the strong implications (G, N)-implications and the Quantum Logic implications QL-implications, for overlap functions O, grouping functions G and fuzzy negations N. Such implications do not necessarily satisfy certain properties, but only weaker versions of these properties, e.g., the exchange principle. However, in general, such properties are not demanded for many applications. In this paper, we analyze the so-called law of O-Conditionality, O(x, 1(x, y)) <= y, for any fuzzy implication I and overlap function O, and, in particular, for Ro-implications, (G, N)-implications, QL-implications and D-implications derived from tuples (O, G, N), the latter also introduced in this paper. We also study the conditional antecedent boundary condition for such fuzzy implications, since we prove that this property, associated to the left ordering property, is important for the analysis of the O-Conditionality. We show that the use of overlap functions to implement de generalized Modus Ponens, as the scheme enabled by the law of O-Conditionality, provides more generality than the laws of T-conditionality and U-conditionality, for t-norms T and uninorms U, respectively.Publication Open Access Monitoring rainfed alfalfa growth in semiarid agrosystems using Sentinel-2 imagery(MDPI, 2021) Echeverría Obanos, Andrés; Urmeneta, Alejandro; González de Audícana Amenábar, María; González de Andrés, Ester; Zientziak; Ingeniaritza; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ciencias; Ingeniería; Gobierno de Navarra / Nafarroako GobernuaThe aim of this study was to assess the utility of Sentinel-2 images in the monitoring of the fractional vegetation cover (FVC) of rainfed alfalfa in semiarid areas such as that of Bardenas Reales in Spain. FVC was sampled in situ using 1 m2 surfaces at 172 points inside 18 alfalfa fields from late spring to early summer in 2017 and 2018. Different vegetation indices derived from a series of Sentinel-2 images were calculated and were then correlated with the FVC measurements at the pixel and parcel levels using different types of equations. The results indicate that the normalized difference vegetation index (NDVI) and FVC were highly correlated at the parcel level (R 2 = 0.712), where as the correlation at the pixel level remained moderate across each of the years studied. Based on the findings, another 29 alfalfa plots (28 rainfed; 1 irrigated) were remotely monitored operationally for 3 years (2017–2019), revealing that location and weather conditions were strong determinants of alfalfa growth in Bardenas Reales. The results of this study indicate that Sentinel-2 imagery is a suitable tool for monitoring rainfed alfalfa pastures in semiarid areas, thus increasing the potential success of pasture management.Publication Open Access Ordered directional monotonicity in the construction of edge detectors(Elsevier, 2021) Marco Detchart, Cedric; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Mesiar, Radko; Lafuente López, Julio; Barrenechea Tartas, Edurne; Pintor Borobia, Jesús María; Estatistika, Informatika eta Matematika; Ingeniaritza; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; IngenieríaIn this paper we provide a specific construction method of ordered directionally monotone functions. We show that the functions obtained with this construction method can be used to build edge detectors for grayscale images. We compare the results of these detectors to those obtained with some other ones that are widely used in the literature. Finally, we show how a consensus edge detector can be built improving the results obtained both by our proposal and by those in the literature when applied individually.Publication Open Access Proyecto Agroinc: prevención del impacto ambiental de incendios provocados por cosechadoras(Interempresas Media, 2022) Arazuri Garín, Silvia; Mangado Ederra, Jesús; López Maestresalas, Ainara; López Molina, Carlos; Angulo Muñoz, Blanca; Arnal Atarés, Pedro; Jarén Ceballos, Carmen; Ingeniería; Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Gobierno de Navarra / Nafarroako GobernuaLas cosechadoras de cereales, por las condiciones ambientales en las que trabajan, alta temperatura y baja humedad, tanto ambiental como del producto que están cosechando, pueden provocar accidentalmente incendios durante la época de recolección. Los daños económicos y medioambientales que estos incendios suponen pueden ser muy importantes, ya que las condiciones de propagación del fuego son óptimas. Los principales objetivos de este proyecto han sido evaluar el impacto ambiental de los incendios producidos en Navarra en los últimos años y establecer una guía de buenas prácticas para su prevención.Publication Open Access Smarterial – Smart matter optomagnetic(2021) Irisarri Erviti, Josu; Marzo Pérez, Asier; Galarreta Rodríguez, Itziar; Estatistika, Informatika eta Matematika; Ingeniaritza; Zientziak; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Ingeniería; CienciasSmart materials, also known as programmable materials, are a combination of different components that have the capability to change shape, move around and adapt to numerous situations by applying an external controllable field. Previous works have used optically guided matter or magnetically actuated materials, but similarly to soft robots, they are limited in spatial resolution or strength. Here we propose combining a low temperature thermoplastic polymer Polycaprolactone (PCL) with ferromagnetic powder particles (Fe). Focused light can heat this compound at specific locations and make it malleable. These heated spots can be actuated by external magnetic fields. Once the material cools down, this process can be repeated, or reversed. The compound can be actuated contact-less in the form of 3D slabs, 2D sheets, and 1D filaments. We show applications for reversible tactile displays and manipulation of objects. The laboratory team has characterised the density, weight, magnetic attraction, magnetic force, phase change, thermal and electrical conductivity and heat difusión (spread point test) for smart ferromagnetic compounds of different mixture proportions. The main advantages of this smart matter optomagnetic are the high spatial resolution of light and the strong force of magnetic attraction whilst mechanical properties of polymers are practically conserved. Due to the low temperature required and the possibility to use infrared or electromagnetic induction to heat the compound, the smart material can be used in air, water, or inside biological tissue. Eventually, Smart materials will enrich collaborative movements, such as grab and hold, and more complex ones, as reshaping and reassembling.Publication Open Access Women, Science and Technology Chair—Promoting women’s careers in stem fields(IEEE, 2023) Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Aranguren Garacochea, Patricia; Barrenechea Tartas, Edurne; Catalán Ros, Leyre; Díaz Lucas, Silvia; Jurío Munárriz, Aránzazu; Martínez Ramírez, Alicia; Millor Muruzábal, Nora; Ortiz Nicolás, Amalia; San Martín Biurrun, Idoia; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe Chair of Women, Science and Technology of the Universidad Pública de Navarra (UPNA) aims to increase the participation of women in the fields of science and technology. Scientific culture and dissemination are the main focus of the different actions of the Chair. These activities include: the theatrical performance "Yo quiero ser científica", experimental workshops and conferences and exhibitions for all audiences and ages. More than 6.000 people have seen the play, more than 1.500 secondary school students have participated in the workshops and the audiovisual material has received more than 20.000 visits.