Artículos de revista DABA - ABES Aldizkari artikuluak
Permanent URI for this collection
Browse
Browsing Artículos de revista DABA - ABES Aldizkari artikuluak by Subject "Abiotic stress"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Open Access Agronomic and metabolomic side-effects of a divergent selection for indol-3-ylmethylglucosinolate content in kale (Brassica oleracea var. acephala)(MDPI, 2021) Poveda Arias, Jorge; Velasco, Pablo; Haro, Antonio de; Johansen, Tor J.; McAlvay, Alex C.; Möllers, Christian; Mølmann, Jorgen A.B.; Ordiales, Elena; Rodríguez, Víctor Manuel; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraBrassica oleracea var. acephala (kale) is a cruciferous vegetable widely cultivated for its leaves and flower buds in Europe and a food of global interest as a 'superfood'. Brassica crops accumulate phytochemicals called glucosinolates (GSLs) which play an important role in plant defense against biotic stresses. Studies carried out to date suggest that GSLs may have a role in the adaptation of plants to different environments, but direct evidence is lacking. We grew two kale populations divergently selected for high and low indol-3-ylmethylGSL (IM) content (H-IM and L-IM, respectively) in different environments and analyzed agronomic parameters, GSL profiles and metabolomic profile. We found a significant increase in fresh and dry foliar weight in H-IM kale populations compared to L-IM in addition to a greater accumulation of total GSLs, indole GSLs and, specifically, IM and 1-methoxyindol-3-ylmethylGSL (1MeOIM). Metabolomic analysis revealed a significant different concentration of 44 metabolites in H-IM kale populations compared to L-IM. According to tentative peak identification from MS interpretation, 80% were phenolics, including flavonoids (kaempferol, quercetin and anthocyanin derivates, including acyl flavonoids), chlorogenic acids (esters of hydroxycinnamic acids and quinic acid), hydroxycinnamic acids (ferulic acid and p-coumaric acid) and coumarins. H-IM kale populations could be more tolerant to diverse environmental conditions, possibly due to GSLs and the associated metabolites with predicted antioxidant potential.