Artículos de revista DABA - ABES Aldizkari artikuluak
Permanent URI for this collection
Browse
Recent Submissions
Publication Open Access Cubierta vegetal bajo las cepas: una alternativa al control de las malas hierbas en los viñedos(INTIA (Tecnologías e Infraestructuras Agroalimentarias), 2023) Abad Zamora, Francisco Javier; Cibriain Sabalza, Félix; Sagüés Sarasa, Ana; Santesteban García, Gonzaga; Lezáun San Martín, Juan Antonio; Fabo Boneta, Jesús María; Virto Quecedo, Íñigo; Imbert Rodríguez, Bosco; Marín Arroyo, Remedios; Garbisu Crespo, Carlos; Ciencias; Zientziak; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute on Innovation and Sustainable Development in Food Chain - ISFOODEn este artículo se presentan los resultados obtenidos con una cubierta vegetal de trébol sembrada bajo las cepas para competir con las malas hierbas, de manera que no sea necesario recurrir al empleo de herbicidas o laboreos intercepas.Publication Open Access La llegada de la carne artificial y sus consecuencias para la ganadería(Asociacion the Conversation España, 2021-02-02) Mendizábal Aizpuru, José Antonio; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOODEn la actualidad existe un intenso debate sobre los hábitos alimentarios y su influencia en aspectos como la salud, la preservación del medio ambiente (biodiversidad, emisiones de gases de efecto invernadero, calentamiento global...) o el bienestar animal.Publication Open Access ¿Sigue siendo leche la leche?(Asociación The Conversation España, 2022-07-05) Mendizábal Aizpuru, José Antonio; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraLleva con nosotros millones de años. En forma de leche materna, es el primer alimento que recibimos los mamíferos; el único que en nuestras primeras etapas de vida es capaz de proveernos de los principios nutritivos imprescindibles para un adecuado desarrollo neuronal, óseo, muscular, amén de las inmunoglobulinas necesarias para dotar de defensas a los recién nacidos. Todo ello constituye la prueba irrefutable de que hablamos de un alimento sano, saludable, equilibrado y con innumerables propiedades beneficiosas para el ser humano. Quizás por eso, buena parte de la población opta por mantener en su dieta la leche de origen animal (de vaca, sobre todo) una vez superada la fase de lactancia. En forma de leche líquida o como derivados lácteos.Publication Open Access Qué dice (y qué no) el informe de la ONU sobre la carne(Asociación the Conversation España, 2019-09-08) Mendizábal Aizpuru, José Antonio; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraEl informe que el IPCC (Panel Intergubernamental de Expertos sobre el Cambio Climático, perteneciente a la ONU) publicó recientemente es exhaustivo y clarificador. El hecho de que hayan participado en su elaboración 107 expertos de 52 países da idea de su importancia y magnitud. Titulado El cambio climático y la tierra, el informe está estructurado en siete capítulos. En total 1384 páginas de texto, más abundante material suplementario. Conscientes de la dificultad que supone para los no expertos en el tema la lectura y el estudio de un texto de tal extensión, el IPCC ha elaborado un comunicado de prensa de siete páginas en varios idiomas, donde recoge las principales ideas y conclusiones del informe. Su lectura, por la transcendencia del tema y la concisión y claridad con que está escrito, resulta muy recomendable para todo ciudadano del mundo.Publication Open Access Characterization of a recombinant Sendai virus vector encoding the small ruminant lentivirus gag-P25: antiviral properties in vitro and transgene expression in sheep(BMC, 2025-03-07) Gómez, Álex; Glaría Ezquer, Idoia; Moncayola, Irati; Echeverría Garín, Irache; Arrizabalaga, Javier; Rodríguez Largo, Ana; Blas, Ignacio de; Lacasta, Delia; Pérez, Estela; Pérez, Marta María; Diego, Alicia de; Miguel, Ricardo de; Lee, Benhur; Luján, Lluís; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Gobierno de Navarra / Nafarroako GobernuaSmall ruminant lentiviruses (SRLV) cause multisystemic chronic inflammatory disease and significant economic losses in sheep and goats worldwide. However, no vaccines or therapies are currently available. In this study, a recombinant Sendai virus (SeV) vector encoding the SRLV gag-P25 gene (rSeV-GFP-P25) from the EV1 strain was generated using In-FUSION cloning and rescued using the SeV reverse genetic system. Transgene expression and stimulation of innate immunity and interferon-stimulated genes (ovine A3Z1, OBST2 and SAMHD1) were evaluated in ovine skin fibroblasts (OSF) transduced with SeV-GFP and rSeV-GFP-P25. Additionally, to characterize the effect of the SRLV restriction in transduced OSF, the SRLV DNA load was quantified at different times post-transduction and post-infection with strain EV1. Using immunohistochemistry and image analysis, transgene expression and tissue distribution of recombinant P25 were studied in two lambs inoculated intranasally, one with rSeV-GFP-P25 and the other with SeV-GFP. rSeV-GFP-P25 induced efficient and transient transgene expression in vitro and in vivo. Furthermore, OSF transduced with rSeV-GFP-P25 presented upregulation of TLR2, TLR3, TLR6, TLR7, RIG-I, MyD88 and IFN-β, whereas SeV-GFP did not induce TLR6 or IFN-β upregulation. Among the interferon-stimulated genes, OBST2 was significantly upregulated after transduction with rSeV-GFP-P25 compared with the empty vector. SRLV restriction gradually increased and persisted after transduction with SeV-GFP and rSeV-GFP-P25, with OSF transduced three times showing cumulative restriction. Forty-eight hours post-inoculation in vivo, marked P25 expression was observed in ciliated epithelial cells and submucosal macrophages/dendritic cells of the nasal mucosa. This study reinforces the important role of the innate immune response in controlling SRLV infection and suggests that rSeV-GFP-P25 is a potential vaccine candidate against SRLV.Publication Open Access Unlocking Spanish pear genetic diversity: strategies for construction of a national core collection(Springer Nature, 2024-11-04) Irisarri, Patricia; Urrestarazu Vidart, Jorge; Ramos-Cabrer, Ana; Pereira-Lorenzo, Santiago; Velázquez-Barrera, María Encarnación; Díaz-Hernández, María Belén; Dapena, Enrique; Urbina, Valero; Dalmases, Josep; Ríos-Mesa, Domingo; Crespo Martínez, Sara; Loidi Erviti, Maite; Santesteban García, Gonzaga; Ascasíbar-Errasti, Javier; Errea, Pilar; Miranda Jiménez, Carlos; Pina, Ana; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMABSpanish pear germplasm collections are crucial for preservation, research, and breeding efforts. However, genetic diversity and structure is unknown at national level. A coordinated national project analyzed 1251 accessions from 7 Spanish pear collections using an internationally recognized set of 14 SSRs to enhance the utilization of these collections. Key findings included the identification of 760 unique genotypes (490 diploids and 270 triploids). Notably, genotypes represented by a single accession accounted for 49% of the total, indicating high vulnerability of this material. Using a Bayesian clustering method revealed two main genetic groups, G1 containing most foreign cultivars and G2 retaining local Spanish cultivars, which were further divided into two other subgroups using a nested approach, revealing moderate but significant differentiation among them. The populations were renamed according to the origin of the reference samples assigned to each group as 'South' (G1.1), 'Western Europe-1' (G1.2), 'Western Europe-2' (G2.1) and 'No-Pyrus communis' (G2.2). The results led to the creation of a 'generalist' collection, aiming to maximize genetic diversity representativeness, starting with 68 genotypes but expanding to 111 to achieve better allele recovery. This core collection is a valuable resource for genetic studies and conservation, enhancing efforts to preserve pear biodiversity.Publication Open Access Evaluating treatments for the protection of grapevine pruning wounds from natural infection by trunk disease fungi(American Phytopathological Society, 2024-09-19) Leal, Catarina; Bujanda, Rebeca; López-Manzanares, Beatriz; Ojeda, Sonia; Berbegal, Mónica; Villa Llop, Ana; Santesteban García, Gonzaga; Palacios Muruzábal, Julián; Gramaje, David; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraInfection of grapevines by fungal pathogens causing grapevine trunk diseases (GTDs) primarily arises from annual pruning wounds made during the dormant season. While various studies have showcased the efficacy of products in shielding pruning wounds against GTD infections, most of these investigations hinge on artificial pathogen inoculations, which may not faithfully mirror real field conditions. This study aimed to evaluate and compare the efficacy of various liquid formulation fungicides (pyraclostrobin + boscalid) and paste treatments, as well as biological control agents (BCA: Trichoderma atroviride SC1, T. atroviride I-1237, and T. asperellum ICC012 + T. gamsii ICC080), for their potential to prevent natural infection of grapevine pruning wounds by trunk disease fungi in two field trials located in Samaniego (Northern Spain) and Madiran (Southern France) over three growing seasons. Wound treatments were applied immediately after pruning in February. One year after pruning, canes were harvested from vines and brought to the laboratory for assessment of Trichoderma spp. and fungal trunk pathogens. More than 1,200 fungal isolates associated with five GTDs (esca, Botryosphaeria, Diaporthe and Eutypa diebacks, and Cytospora canker) were collected from the two vineyards each growing season. Our findings reveal that none of the products under investigation exhibited complete effectiveness against all the GTDs. The efficacy of these products was particularly influenced by the specific year of study. A notable exception was observed with the biocontrol agent T. atroviride I-1237, which consistently demonstrated effectiveness against Botryosphaeria dieback infections throughout each year of the study, irrespective of the location. The remaining products exhibited efficacy in specific years or locations against particular diseases, with the physical barrier (paste) showing the least overall effectiveness. The recovery rates of Trichoderma spp. in treated plants were highly variable, ranging from 17 to 100%, with both strains of T. atroviride yielding the highest isolation rates. This study underscores the importance of customizing treatments for specific diseases, taking into account the influence of environmental factors for BCA applications.Publication Embargo Effects of early, late and self-selected time-restricted eating on visceral adipose tissue and cardiometabolic health in participants with overweight or obesity: a randomized controlled trial(Nature Research, 2025-01-07) Dote-Montero, Manuel; Clavero-Jimeno, Antonio; Merchán Ramírez, Elisa; Osés Recalde, Maddi; Echarte Medina, Jon; Camacho-Cardenosa, Alba; Concepción Álvarez, Mara de la Caridad; Amaro Gahete, Francisco J.; Alcántara Alcántara, Juan Manuel; López-Vázquez, Alejandro; Cupeiro, Rocío; Migueles, Jairo H.; De la O, Alejandro; García Pérez, Patricia Virginia; Contreras-Bolivar, Victoria ; Muñoz-Garach, Araceli; Zugasti Murillo, Ana; Petrina Jáuregui, María Estrella; Álvarez de Eulate, Natalia; Goñi Gironés, María Elena; Armendáriz Brugos, Cristina; González Cejudo, María Trinidad; Martín-Rodríguez, José L.; Idoate, Fernando; Cabeza Laguna, Rafael; Carneiro-Barrera, Almudena; Cabo, Rafael de; Muñoz Torres, Manuel; Labayen Goñi, Idoia; Ruiz, Jonatan R.; Ciencias de la Salud; Osasun Zientziak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako GobernuaThe optimal eating window for time-restricted eating (TRE) remains unclear, particularly its impact on visceral adipose tissue (VAT), which is associated with cardiometabolic morbidity and mortality. We investigated the effects of three TRE schedules (8 h windows in the early day, late day and participant-chosen times) combined with usual care (UC, based on education about the Mediterranean diet) versus UC alone over 12 weeks in adults with overweight or obesity. The primary outcome was VAT changes measured by magnetic resonance imaging. A total of 197 participants were randomized to UC (n = 49), early TRE (n = 49), late TRE (n = 52) or self-selected TRE (n = 47). No significant differences were found in VAT changes between early TRE (mean difference (MD): −4%; 95% confidence interval (CI), −12 to 4; P = 0.87), late TRE (MD: −6%; 95% CI, −13 to 2; P = 0.31) and self-selected TRE (MD: −3%; 95% CI, −11 to 5; P ≥ 0.99) compared with UC, nor among the TRE groups (all P ≥ 0.99). No serious adverse events occurred; five participants reported mild adverse events. Adherence was high (85–88%) across TRE groups. These findings suggest that adding TRE, irrespective of eating window timing, offers no additional benefit over a Mediterranean diet alone in reducing VAT. TRE appears to be a safe, well-tolerated and feasible dietary approach for adults with overweight or obesity. ClinicalTrials.gov registration: NCT05310721.Publication Open Access Optimizing oilseed rape growth: exploring the effect of foliar biostimulants on the interplay among metabolism, phenology, and yield(Wiley, 2024-10-03) Ancín Rípodas, María; Soba Hidalgo, David; Picazo Rodríguez, Pedro Javier; Gámez Guzmán, Angie Lorena; Le Page, Jean-François; Houdusse, Diane; Aranjuelo Michelena, Iker; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraThe current agricultural system is in search of new strategies to achieve a more sustainable production while keeping or even increasing crop yield and quality. In this scenario, the application of biostimulants constitutes a potent solution. In the current study, the impact of a blue-green microalgal extract (MB) and a pig tissue hydrolysate (PTH) on rapeseed plants' development was characterized. Obtained results revealed a positive effect on yield parameters of plants treated with MB and, especially, PTH; this was associated to an improvement on the photosynthetic performance. Moreover, this study remarked the effects of biostimulants on plant phenology through their pivotal role in modulating developmental processes. More specifically, proteomic, metabolomic, and hormone content analyses revealed distinct alterations associated with the acceleration of phenology induced by biostimulant application. Additionally, some antioxidant enzymes and stress-related compounds were up-regulated upon MB and PTH treatments, indicating enhanced plant defense mechanisms in response to accelerated phenological transitions. Such findings highlight the intricate interplay between biostimulants and plant physiology, wherein biostimulants orchestrate rapid developmental changes, ultimately influencing growth dynamics. Altogether, the current study reveals that the application of both MB and PTH biostimulants promoted rapeseed plant phenology and productivity associated with an improvement in the photosynthetic machinery while boosting other physiological and molecular mechanisms.Publication Open Access Does the response of Rubisco and photosynthesis to elevated [CO2] change with unfavourable environmental conditions?(Oxford University Press, 2024-09-12) Ancín Rípodas, María; Gámez Guzmán, Angie Lorena; Jáuregui Mosquera, Iván; Galmes, J.; Sharwood, R. E.; Erice, G.; Ainsworth, E. A.; Tissue, D. T.; Sanz-Sáez, A.; Aranjuelo Michelena, Iker; Ciencias; Zientziak; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraClimate change due to anthropogenic CO2 emissions affects plant performance globally. To improve crop resilience, we need to understand the effects of elevated CO2 concentration (e[CO2]) on CO2 assimilation and Rubisco biochemistry. However, the interactive effects of e[CO2] and abiotic stress are especially unclear. This study examined the CO2 effect on photosynthetic capacity under different water availability and temperature conditions in 42 different crop species, varying in functional group, photosynthetic pathway, and phenological stage. We analysed close to 3000 data points extracted from 120 published papers. For C-3 species, e[CO2] increased net photosynthesis and intercellular [CO2], while reducing stomatal conductance and transpiration. Maximum carboxylation rate and Rubisco in vitro extractable maximal activity and content also decreased with e[CO2] in C-3 species, while C-4 crops are less responsive to e[CO2]. The interaction with drought and/or heat stress did not significantly alter these photosynthetic responses, indicating that the photosynthetic capacity of stressed plants responded to e[CO2]. Moreover, e[CO2] had a strong effect on the photosynthetic capacity of grasses mainly in the final stages of development. This study provides insight into the intricate interactions within the plant photosynthetic apparatus under the influence of climate change, enhancing the understanding of mechanisms governing plant responses to environmental parameters.Publication Open Access Impact of a dual treatment on resistant starch level and techno-functional properties of pea and faba bean flours(Wiley, 2024-10-25) Arroqui Vidaurreta, Cristina; Noriega Domínguez, María José; Ibáñez Moya, Francisco C.; Milagro, Fermín I.; Beriain Apesteguía, María José; Virseda Chamorro, Paloma; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako GobernuaStarch-rich pulses' flours, which are rich in fiber and resistant starch (RS), can be an interesting gluten-free ingredient for the development of novel healthy foods. The study aims to increase the RS content of protein-reduced fraction of legume flours (pea [P] and faba bean [FB]) by the application of thermal (autoclaving-cooling) and dual (thermal plus high-hydrostatic pressure) treatments. Both treatments enhance the RS contents, reaching 6.8% in P flour after dual treatment. The techno-functional properties are dependent both on the type of flour and the treatment applied. A loss of water solubility (WS) and an increase in water binding capacity are observed. The WS index and emulsion activity remained unchanged or slightly changed, but emulsion stability decreased significantly. The viscosity of the samples is modified according mainly to the flour type. P flour is more affected by the dual treatment than FB flour, which is evidenced by the greater changes shown in RS, WS, and pasting properties.Publication Embargo Upgrading and validating a soil water balance model to predict stem water potential in vineyards(Elsevier, 2024-12-15) Mirás-Ávalos, José M.; Escalona, José M.; Pérez-Álvarez, Eva Pilar; Romero Azorín, Pascual; Botia, Pablo; Navarro, Josefa; Torres Molina, Nazareth; Santesteban García, Gonzaga; Uriarte, David; Intrigliolo, Diego S.; Buesa, Ignacio; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMABEfficient water management is pivotal for viticulture sustainability. Decision support tools can advise on how to optimize irrigation or on the feasibility of growing grapes in rainfed conditions, but reliable algorithms for assessing vine water status are required. In this context, the aim of the current study was to upgrade a soil water balance model specific for vineyards by incorporating meteorological, soil and vine vigor in equations that transform the fraction of transpirable soil water into midday stem water potential (Ψstem). The model's sensitivity to variations in the magnitude of input parameters was analyzed. Furthermore, the model was tested in a broad scope of Spanish vineyards with different grapevine cultivars (both red and white), rootstocks, plant age, soil and climatic conditions, and water regimes, totaling 129 scenarios. The model was only slightly sensitive to variations in the magnitude of most inputs, except for the fraction of transpirable water at which leaf stomatal conductance begin to decline. Moreover, the model satisfactorily reproduced the evolution of Ψstem over the growing season, although it slightly overestimated the measured ¿stem values, as the slopes of the fitted regression lines were lesser than 1 on most occasions, 76 out of 129. Nonetheless, the coefficients of determination for these relationships were greater than 0.9, except for 21 datasets. Mean errors averaged 0.024 ± 0.015 MPa, while root mean square errors averaged 0.27 ± 0.01 MPa. The index of agreement was greater than 0.75 in 51 datasets, with only three datasets showing an index of agreement lower than 0.5. Nevertheless, the deviations between observed and simulated Ψstem values did not alter the classification of the water stress undergone by grapevines. This upgraded model could constitute the core of a decision support system for water management in vineyards, applicable to both rainfed and irrigated conditions.Publication Open Access Plant-based and hybrid patties with healthy fats and broccoli extract fortification: more balanced, environmentally friendly alternative to meat prototypes?(MDPI, 2025-02-01) González Peñalver, José Miguel; Martínez Aldaya, Maite; Villaño Valencia, Débora; Virseda Chamorro, Paloma; Beriain Apesteguía, María José; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ciencias; Zientziak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Gobierno de Navarra / Nafarroako GobernuaHybrid and plant-based products are an emerging trend in food science. This study aimed to develop three patty prototypes (meat, hybrid, and plant-based) enhanced with vegetable fat replacement and broccoli extract using a soy allergen-free protein matrix treated with high hydrostatic pressure (HHP) and sous vide cooking to create sustainable and nutritious burger alternatives. The samples were evaluated for microbiological safety, proximal composition, physicochemical properties, sensory characteristics, and carbon footprint. The key findings revealed that the plant-based patties had the smallest carbon footprint (0.12 kg CO2e), followed by the hybrid patties (0.87 kg CO2e) and the meat patties (1.62 kg CO2e). The hybrid patties showed increased hardness, cohesiveness, gumminess, and chewiness compared to the meat patties after sous vide treatment. This improvement likely results from synergies between the meat and plant proteins. Regarding the treatments, in all the samples, the highest hardness was observed after the combined HHP and sous vide treatment, an interesting consideration for future prototypes. Sensory analysis indicated that the plant-based and hybrid samples maintained appealing visual and odour characteristics through the treatments, while the meat patties lost the evaluator¿s acceptance. Although further improvements in sensory attributes are needed, hybrid patties offer a promising balance of improved texture and intermediate carbon footprint, making them a viable alternative as sustainable, nutritious patties.Publication Open Access Mixtures of insect-pathogenic viruses in a single virion: towards the development of custom-designed insecticides(American Society for Microbiology, 2021) López Ferber, Miguel; Lent, Jan W. M. van; Beperet Arive, Inés; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMABAlphabaculoviruses (Baculoviridae) are pathogenic DNA viruses of Lepidoptera that have applications as the basis for biological insecticides and expression vectors in biotechnological processes. These viruses have a characteristic physical structure that facilitates the transmission of groups of genomes. We demonstrate that coinfection of a susceptible insect by two different alphabacu-lovirus species results in the production of mixed-virus occlusion bodies containing the parental viruses. This occurred between closely related and phylogeneti-cally more distant alphabaculoviruses. Approximately half the virions present in proteinaceous viral occlusion bodies produced following coinfection of insects with a mixture of two alphabaculoviruses contained both viruses, indicating that the viruses coinfected and replicated in a single cell and were coenveloped within the same virion. This observation was confirmed by endpoint dilution assay. Moreover, both viruses persisted in the mixed-virus population by coinfection of insects during several rounds of insect-to-insect transmission. Coinfection by viruses that differed in genome size had unexpected results on the length of viral nucleocapsids, which differed from those of both parental viruses. These results have unique implications for the development of alphabaculoviruses as biological control agents of insect pests. IMPORTANCE Alphabaculoviruses are used as biological insecticides and expression vectors in biotechnology and medical applications. We demonstrate that in caterpillars infected with particular mixtures of viruses, the genomes of different baculovirus species can be enveloped together within individual virions and occluded within proteinaceous occlusion bodies. This results in the transmission of mixed-virus populations to the caterpillar stages of moth species. Once established, mixed-virus populations persist by coinfection of insect cells during several rounds of insect-to-insect transmission. Mixed-virus production technology opens the way to the development of custom-designed insecticides for control of different combinations of caterpillar pest species.Publication Open Access Rational application of treated sewage sludge with urea increases GHG mitigation opportunities in Mediterranean soils(Elsevier, 2017-02-01) Calleja Cervantes, María Eréndira; Aparicio Tejo, Pedro María; Villadas Latorre, Pablo José; Irigoyen Iriarte, Ignacio; Irañeta, J.; Fernández-González, A.J.; Fernández-López, M.; Menéndez, S.; Producción Agraria; Nekazaritza Ekoizpena; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABPublication Open Access Avances en el conocimiento sobre los organismos fitopatógenos y su repercusión en la Fitopatología en los últimos 35 años(Phytoma España, 2023) Landa, Blanca B.; Cambra Álvarez, Mariano; Castillo, Pablo; Escobar Lucas, Carolina; García Arenal, Fernando; Jiménez Díaz, Rafael M.; López, María Milagros; Montesinos, Emilio; Murillo Martínez, Jesús; Pallás, Vicente; Palomares Rius, Juan Emilio; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMABLos pasados 35 años han sido testigos de importantes avances en el conocimiento sobre los organismos fitopatógenos, demasiado numerosos y diversos en naturaleza para poder resumirlos en unas páginas. Muchos de dichos avances han estado mediados por el desarrollo de nuevas metodologías, instrumentos y protocolos de estudio, en particular los concernientes a las tecnologías de análisis y secuenciación del ADN que comenzaron con su amplificación mediada por una ADN polimerasa termoestable (PCR) ¿y sus posteriores derivados: PCR cuantitativa, en tiempo real, digital, etc. Estos avances continuaron con el uso de las plataformas de secuenciación masiva para el análisis de los genomas de estos organismos, incluso a partir de la matriz vegetal que infectaban sin necesidad de su aislamiento, así como el uso de diversas tecnologías -ómicas para el análisis masivo de la expresión diferencial de genes (genómica), proteínas (proteómica) y metabolitos (metabolómica). Todo ello ha tenido profundas repercusiones, por ejemplo, sobre la taxonomía y relaciones filogenéticas de estos organismos fitopatógenos, la comprensión de la regulación genética de la patogenicidad y de los factores (efectores) de virulencia, la resistencia a la infección en la planta. Asimismo, las tecnologías de observación microscópica y el uso de genes que codifican proteínas fluorescentes de diferentes propiedades espectrales han propiciado una mejor compresión de los procesos de infección (Deal, 2011). En las siguientes secciones del artículo se presentan algunos avances ilustrativos seleccionados por expertos para cada uno de los grandes grupos de organismos fitopatógenos: hongos, oomicetos, bacterias, virus y nematodos. Cabe decir que muchos de los avances presentados para cada organismo fitopatógeno son aplicables a todos los demás. Si bien, con objeto de no incurrir en reiteraciones, y extendernos en exceso, se ha intentado, en la medida de lo posible, seleccionar avances con aspectos diferenciadores.Publication Open Access Impacts of leaf removal and shoot thinning on cumulative daily light intensity and thermal time and their cascading effects of grapevine (vitis vinifera L.) berry and wine chemistry in warm climates(Elsevier, 2020-10-23) Torres Molina, Nazareth; Martínez-Lüscher, Johann; Porte, Etienne; Yu, Runze; Kurtural, Sahap Kaan; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraLeaf removal (LR), shoot thinning (ST) and their combination (LRST) are known to increase berry solar exposure affecting berry composition and consequently improving wine quality and antioxidant properties. We hypothesized that LR, ST or their combination (LRST) would affect flavonoid content during berry ripening by means of changes of the berry microclimate (light and temperature) as well as wine composition, quality, and antioxidant properties. Thermal time and sum of light intensity thresholds were different to achieve the maximum berry anthocyanin and flavonol contents. ST mostly affected wine characteristics by increasing alcoholic content, acidity, hue and phenolic substances. Wine antioxidant capacity decreased in ST wines likely by decreases in catechin and quercetin contents. ST and LRST increased proanthocyanidin polymerization and decreased monomeric flavan-3-ols, which may reduce wine bitterness and enhance astringency. Therefore, the management of canopy should take into account the warming trends in viticulture regions, rather than being applied preemptively.Publication Open Access Arbuscular mycrorrhizal fungi inoculation and applied water amounts modulate the response of young grapevines to mild water stress in a hyper-arid season(Frontiers Media, 2021-01-14) Torres Molina, Nazareth; Yu, Runze; Kurtural, Sahap Kaan; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraSeveral factors may affect the success of a replanting vineyard. Given the current environmental conditions, an optimized irrigation schedule would still be one of the most desirable tools to improve crop productivity and fruit quality. On the other hand, the symbiosis of grapevines with arbuscular mycorrhizal fungi (AMF) is a key component of the vineyard production systems improving the vine growth, nutrient uptake, and berry quality. The aim of this study was to characterize the response of Merlot grapevines to AMF inoculation and two different irrigation amounts in their first productive year. The experiment was conducted on 2-year Merlot grapevines inoculated with AMF (I) or not-inoculated (NI) and subjected to two irrigation amounts, full irrigated (FI), where the amount of water was enough to maintain expansive growth and half irrigated (HI) where plants received the half of the amount of water of FI plants. Water status, gas exchange parameters, growth, mineral content, berry composition, and mycorrhizal colonization were monitored through the season. AMF inoculation improved the grapevine vegetative growth, water status, and photosynthetic activity, especially when vines were subjected to HI irrigation; however, no effect was observed on the leaf mineral content, must pH, total soluble solids, or total acidity. The main effects were observed on the flavonoid composition of berry skins at harvest. Irrigation amounts and mycorrhizal inoculation modified cyanidin and peonidin derivatives whereas flavonol composition was mainly affected by irrigation treatments. A strong relationship between the mycorrhizal colonization rate of roots and total quercetins, cyanidins, and peonidins was found. Findings support the use of a mycorrhizal inoculum and a better water management in a hyper-arid growing season; however, these results may be affected by edaphoclimatic characteristics and living microbiota in vineyard soils, which should be taken into account before making the decision of inoculating the vineyard.Publication Open Access Effect of high-pressure processing pretreatment on the textural properties of cooked Nuovo Maratelli rice(MDPI, 2024-12-15) Arroqui Vidaurreta, Cristina; Horvitz Szoichet, Sandra Susana; Noriega Domínguez, María José; Fernández Pan, Idoya; Ibáñez Moya, Francisco C.; Virseda Chamorro, Paloma; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOODNuovo Maratelli, a japonica rice with an intermediate amylose content, is suitable for paella (a traditional Spanish dish) due to its ability to withstand cooking and absorb flavors. In this study, high-pressure processing (HPP) at 400 and 600 MPa (10 min) was used as a pretreatment to improve the properties of rice cooked by either boiling or microwaving. The microstructure and pasting properties of unpressurized and pressurized rice were examined. Also, the cooking time and cooking kinetics were determined for each cooking method. Overall, the pasting properties of the rice were not impacted by the HPP treatments, but the typical polyhedral form of the rice starch granules was lost, especially at 600 MPa. Cooking times were reduced from 14 and 10 min for unpressurized samples to 12 and 8 min (400 MPa) and 8 and 6 min (600 MPa) for boiling- and microwave-cooked rice, respectively. The rice pretreated at 400 MPa (10 min) and microwaved (8 min) had lower hardness and adhesiveness, which was linked to the release of amylose during cooking. In summary, HPP could be an effective pretreatment for the improvement of the cooking and textural properties of Nuovo Maratelli rice, particularly when cooked by microwaving.Publication Open Access Berry quality and antioxidant properties in vitis vinifera cv. tempranillo as affected by clonal variability, mycorrhizal inoculation and temperatura(CSIRO Publishing, 2016-08-24) Torres Molina, Nazareth; Goicoechea, Nieves; Morales Iribas, Fermín; Antolín, M. Carmen; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraThe projected increase in mean temperatures caused by climate change is expected to have detrimental impacts on berry quality. Microorganisms as arbuscular mycorrhizal fungi (AMF) produce numerous benefits to host plants and can help plants to cope with abiotic stresses such as high temperature. The aims of this research were to characterise the response of three clones of Vitis vinifera L. cv. Tempranillo to elevated temperatures and to determine whether AMF inoculation can improve berry antioxidant properties under these conditions. The study was carried out on three fruit-bearing cuttings clones of cv. Tempranillo (CL-260, CL-1048 and CL-1089) inoculated with AMF or uninoculated and subjected to two temperature regimes (day¿night: 24°C¿14°C and 28°C¿18°C) during berry ripening. Results showed that clonal diversity of Tempranillo resulted in different abilities to respond to elevated temperature and AMF inoculation. In CL-1048, AMF inoculation improved parameters related to phenolic maturity such as anthocyanin content and increased antioxidant activity under elevated temperature, demonstrating a protective role of AMF inoculation against warming effects on berry quality. The results therefore suggest that selection of new clones and/or the implementation of measures to promote the association of grapevines with AMF could be strategies to improve berry antioxidant properties under future warming conditions.