Artículos de revista DCMN - NIZS Aldizkari artikuluak

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 20 of 98
  • PublicationOpen Access
    Rational application of treated sewage sludge with urea increases GHG mitigation opportunities in Mediterranean soils
    (Elsevier, 2017-02-01) Calleja Cervantes, María Eréndira; Aparicio Tejo, Pedro María; Villadas Latorre, Pablo José; Irigoyen Iriarte, Ignacio; Irañeta, Iosu; Fernández-González, A.J.; Fernández-López, M.; Menéndez, S.; Producción Agraria; Nekazaritza Ekoizpena; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB
  • PublicationOpen Access
    Use of recombinant iron-superoxide dismutase as a marker of nitrative stress
    (Elservier, 2008-04-20) Larrainzar Rodríguez, Estíbaliz; Urarte Rodríguez, Estíbaliz; Auzmendi, Iñigo; Ariz Arnedo, Idoia; Arrese-Igor Sánchez, César; González García, Esther; Morán Juez, José Fernando; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, 57/2007
    Superoxide dismutases (SODs; EC 1.15.1.1) are a group of metalloenzymes which are essential to protect cells under aerobic conditions. In biological systems, it has been reported that SODs and other proteins are susceptible to be attacked by peroxynitrite (ONOO-) which can be originated from the reaction of nitric oxide with superoxide radical. ONOO- is a strong oxidant molecule capable of nitrating peptides and proteins at the phenyl side chain of the tyrosine residues. In the present work, bovine serum albumin (BSA) and recombinant iron¿superoxide dismutase from the plant cowpea (Vu_FeSOD) are used as target molecules to estimate ONOO- production. The method employs the compound SIN-1, which simultaneously generates -NO and O2- in aerobic aqueous solutions. First, assay conditions were optimized incubating BSA with different concentrations of SIN-1, and at a later stage, the effect on the tyrosine nitration and catalytic activity of Vu_FeSOD was examined by in-gel activity and spectrophotometric assays. Both BSA and Vu_FeSOD are nitrated in a dose-dependent manner, and, at least in BSA nitration, the reaction seems to be metal catalyzed.
  • PublicationOpen Access
    Expression and localization of a Rhizobium-derived cambialistic superoxide dismutase in pea (Pisum sativum) nodules subjected to oxidative stress
    (The American Phytopathological Society, 2011-09-07) Asensio, Aarón C.; Marino Bilbao, Daniel; James, Euan K.; Ariz Arnedo, Idoia; Arrese-Igor Sánchez, César; Aparicio Tejo, Pedro María; Arredondo-Peter, Raúl; Morán Juez, José Fernando; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Two phylogenetically unrelated superoxide dismutase (SOD) families, i.e., CuZnSOD (copper and zinc SOD) and FeMn-CamSOD (iron, manganese, or cambialistic SOD), eliminate superoxide radicals in different locations within the plant cell. CuZnSOD are located within the cytosol and plastids, while the second family of SOD, which are considered to be of bacterial origin, are usually located within organelles, such as mitochondria. We have used the reactive oxygen species¿producer methylviologen (MV) to study SOD isozymes in the indeterminate nodules on pea (Pisum sativum). MV caused severe effects on nodule physiology and structure and also resulted in an increase in SOD activity. Purification and N-terminal analysis identified CamSOD from the Rhizobium leguminosarum endosymbiont as one of the most active SOD in response to the oxidative stress. Fractionation of cell extracts and immunogold labeling confirmed that the CamSOD was present in both the bacteroids and the cytosol (including the nuclei, plastids, and mitochondria) of the N-fixing cells, and also within the uninfected cortical and interstitial cells. These findings, together with previous reports of the occurrence of FeSOD in determinate nodules, indicate that FeMnCamSOD have specific functions in legumes, some of which may be related to signaling between plant and bacterial symbionts, but the occurrence of one or more particular isozymes depends upon the nodule type.
  • PublicationOpen Access
    High irradiance increases NH4+ tolerance in Pisum sativum: higher carbon and energy availability improve ion balance but not N assimilation
    (Elsevier, 2011-03-02) Ariz Arnedo, Idoia; Artola Rezola, Ekhiñe; Asensio, Aarón C.; Cruchaga Moso, Saioa; Aparicio Tejo, Pedro María; Morán Juez, José Fernando; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Institute for Multidisciplinary Research in Applied Biology - IMAB
    The widespread use of NO3− fertilization has had a major ecological impact. NH4+ nutrition may help to reduce this impact, although high NH4+ concentrations are toxic for most plants. The underlying tolerance mechanisms are not yet fully understood, although they are thought to include the limitation of C, the disruption of ion homeostasis, and a wasteful NH4+ influx/efflux cycle that carries an extra energetic cost for root cells. In this study, high irradiance (HI) was found to induce a notable tolerance to NH4+ in the range 2.5–10 mM in pea plants by inducing higher C availability, as shown by carbohydrate content. This capacity was accompanied by a general lower relative N content, indicating that tolerance is not achieved through higher net N assimilation on C-skeletons, and it was also not attributable to increased GS content or activity in roots or leaves. Moreover, HI plants showed higher ATP content and respiration rates. This extra energy availability is related to the internal NH4+ content regulation (probably NH4+ influx/efflux) and to an improvement of the cell ionic balance. The limited C availability at lower irradiance (LI) and high NH4+ resulted in a series of metabolic imbalances, as reflected in a much higher organic acid content, thereby suggesting that the origin of the toxicity in plants cultured at high NH4+ and LI is related to their inability to avoid large-scale accumulation of the NH4+ ion.
  • PublicationOpen Access
    Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea
    (Elsevier, 2011-03-01) Cruchaga Moso, Saioa; Artola Rezola, Ekhiñe; Lasa Larrea, Berta; Ariz Arnedo, Idoia; Irigoyen Iriarte, Ignacio; Morán Juez, José Fernando; Aparicio Tejo, Pedro María; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Producción Agraria; Nekazaritza Ekoizpena
    The application of urease inhibitors in conjunction with urea fertilizers as a means of reducing N loss due to ammonia volatilization requires an in-depth study of the physiological effects of these inhibitors on plants. The aim of this study was to determine how the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) affects N metabolism in pea and spinach. Plants were cultivated in pure hydroponic culture with urea as the sole N source. After 2 weeks of growth for pea, and 3 weeks for spinach, half of the plants received NBPT in their nutrient solution. Urease activity, urea and ammonium content, free amino acid composition and soluble protein were determined in leaves and roots at days 0, 1, 2, 4, 7 and 9, and the NBPT content in these tissues was determined 48 h after inhibitor application. The results suggest that the effects of NBPT on spinach and pea urease activity differ, with pea being most affected by this treatment, and that the NBPT absorbed by the plant caused a clear inhibition of the urease activity in pea leaf and roots. The high urea concentration observed in leaves was associated with the development of necrotic leaf margins, and was further evidence of NBPT inhibition in these plants. A decrease in the ammonium content in roots, where N assimilation mainly takes place, was also observed. Consequently, total amino acid contents were drastically reduced upon NBPT treatment, indicating a strong alteration of the N metabolism. Furthermore, the amino acid profile showed that amidic amino acids were major components of the reduced pool of amino acids. In contrast, NBPT was absorbed to a much lesser degree by spinach plants than pea plants (35% less) and did not produce a clear inhibition of urease activity in this species.
  • PublicationOpen Access
    Temporal interactions among throughfall, type of canopy and thinning drive radial growth in an Iberian mixed pine-beech forest
    (Elsevier, 2018) Cardil Forradellas, Adrián; Imbert Rodríguez, Bosco; Camarero, Jesús Julio; Primicia Alvarez, Irantzu; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Many factors can influence tree growth over time such as different forest management practices, climate or tree-to-tree interactions, especially in mixed forests. We show in this work how the temporal growth patterns for Scots pine and European beech depend on thinning intensity (0%, 20% and 40% extraction of basal area), canopy type (pine-beech vs. pine patches), throughfall and their interactions. To fulfill this objective we monitored radial growth of both species using band dendrometers during a 6-year long period including two very dry years. Temporal growth patterns differed between both species. Whereas Scots pine showed two main peaks of growth in May-June and October, European beech mainly grew from May to early September even when throughfall was very limited. Effects of thinning on growth generally increased for both species during dry periods both at the seasonal and annual scales. The treatment with 20% of thinning intensity was the most effective at the annual scale for enhancing growth of both species. However, increases in growth due to thinning were much higher in beech than in pine and lasted longer. Thinning effects on pine were higher in mixed canopy than in pure canopy and appeared to be modulated by throughfall. Global differences in pine growth between canopy types as a function of throughfall increased during the main growing season as beech canopy developed. Growth of Scots pine, but not that of European beech, generally increased with throughfall which suggests that pine might be more dependent for its growth on water from the soil surface layer while beech would depend more on water from deeper soil layers. Our findings have implications to select the most convenient thinning treatments and canopy type under a potential climate change scenario characterized by warmer conditions, more severe droughts and less throughfall.
  • PublicationOpen Access
    Tree-to-tree competition in mixed European beech-Scots pine forests has different impacts on growth and water-use efficiency depending on site condition.
    (Wiley, 2018) González de Andrés, Ester; Camarero, Jesús Julio; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Lo, Yueh-Hsin; Sangüesa Barreda, G.; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Mixed conifer-hardwood forests can be more productive than pure forests and they are increasingly considered as ecosystems that could provide adaptation strategies in the face of global change. However, the combined effects of tree-to-tree competition, rising atmospheric CO2 concentrations and climate on such mixtures remain poorly characterized and understood.2. To fill this research gap, we reconstructed 34-year series (1980-2013) of growth (basal area increment, BAI) and intrinsic water-use efficiency (iWUE) of Scots pine (Pinus sylvestris L.)-European beech (Fagus sylvatica L.) mixed stands at two climati-cally contrasting sites located in the southwestern Pyrenees. We also gathered data on tree-to-tree competition and climate variables in order to test the hypotheses that (1) radial growth will be greater when exposed to inter- than to intraspecific competition, that is, when species complementarity occurs and (2) enhanced iWUE could be linked to improved stem radial growth.3. Growth of both species was reduced when intraspecific competition increased. Species complementarity was linked to improved growth of Scots pine at the continental site, while competition overrode any complementarity advantage at the drought-prone Mediterranean site. Beech growth did not show any significant response to pine admixture likely due to shade tolerance and the highly competitive nature of this species. Increasing interspecific competition drove recent iWUE changes, which increased in Scots pine but decreased in European beech. The iWUE enhancement did not involve any growth improvement in Scots pine. However, the positive BAIiWUE relationship found for beech suggests an enhanced beech growth in drought-prone sites due to improved water use.4. Synthesis. Complementarity may enhance growth in mixed forests. However, water scarcity can constrict light-related complementarity for shade intolerant species (Scots pine) in drought-prone sites. Basal area increment-intrinsic water-use efficiency relationships were negative for Scots pine and positive for European beech. These contrasting behaviours have got implications for coping with the expected increasing drought events in Scots pine-European beech mixtures located near ecological limit of the two species. Complementarity effects between tree species should be considered to avoid overestimating the degree of future carbon uptake by mixed conifer¿broadleaf forests.
  • PublicationOpen Access
    Split‐root systems applied to the study of the legume‐rhizobial symbiosis: what have we learned?
    (Wiley, 2014) Larrainzar Rodríguez, Estíbaliz; Gil Quintana, Erena; Arrese-Igor Sánchez, César; González García, Esther; Marino Bilbao, Daniel; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Split-root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels.
  • PublicationOpen Access
    A proteomic approach reveals new actors of nodule response to drought in split-root grown pea plants
    (Wiley, 2014) Irar, Sami; González García, Esther; Arrese-Igor Sánchez, César; Marino Bilbao, Daniel; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Drought is considered the more harmful abiotic stress resulting in crops yield loss. Legumes in symbiosis with rhizobia are able to fix atmospheric nitrogen. Biological nitrogen fixation (SNF) is a very sensitive process to drought and limits legumes agricultural productivity. Several factors are known to regulate SNF including oxygen availability to bacteroids, carbon and nitrogen metabolisms; but the signalling pathways leading to SNF inhibition are largely unknown. In this work, we have performed a proteomic approach of pea plants grown in split-root-system where one half of the root was well-irrigated and the other was subjected to drought. Water stress locally provoked nodule water potential decrease that led to SNF local inhibition. The proteomic approach revealed 11 and 7 nodule proteins regulated by drought encoded by P. sativum and R. leguminosarum genomes respectively. Among these 18 proteins, three proteins related to flavonoid metabolism, two to sulphur metabolism and three RNA-binding proteins were identified. These proteins could be molecular targets for future studies focused on the improvement of legumes tolerance to drought. Moreover, this work also provides new hints for the deciphering of SNF regulation machinery in nodules.
  • PublicationOpen Access
    Nodule performance within a changing environmental context
    (Elsevier, 2014) Aranjuelo Michelena, Iker; Arrese-Igor Sánchez, César; Molero, Gemma; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Global climate models predict that future environmental conditions will see alterations in temperature, water availability and CO2 concentration ([CO2]) in the atmosphere. Climate change will reinforce the need to develop highly productive crops. For this purpose it is essential to identify target traits conditioning plant performance in changing environments. N2 fixing plants represent the second major crop of agricultural importance worldwide. The current review provides a compilation of results from existing literature on the effects of several abiotic stress conditions on nodule performance and N2 fixation. The environmental factors analysed include water stress, salinity, temperature, and elevated [CO2]. Despite the large number of studies analysing [CO2] effects in plants, frequently they have been conducted under optimal growth conditions that are difficult to find in natural conditions where different stresses often occur simultaneously. This is why we have also included a section describing the current state of knowledge of interacting environmental conditions in nodule functioning. Regardless of the environmental factor considered, it is evident that some general patterns of nodule response are observed. Nodule carbohydrate and N compound availability, together with the presence of oxygen reactive species (ROS) have proven to be the key factors modulating N2 fixation at the physiological/biochemical levels. However, with the exception of water availability and [CO2], it should also be considered that nodule performance has not been characterised in detail under other limiting growth conditions. This highlights the necessity to conduct further studies considering these factors. Finally, we also observe that a better understanding of these metabolic effects of changing environment in nodule functioning would require an integrated and synergistic investigation based on widely used and novel protocols such as transcriptomics, proteomics, metabolomics and stable isotopes.
  • PublicationOpen Access
    Pea plant responsiveness under elevated [CO2] is conditioned by the N source (N2 fixation versus NO3 fertilization)
    (Elsevier, 2013) Aranjuelo Michelena, Iker; Cabrerizo Geijo, Pablo María; Arrese-Igor Sánchez, César; Aparicio Tejo, Pedro María; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    The main goal of this study was to test the effect of [CO2] on C and N management in 2different plant organs (shoots, roots and nodules) and its implication in the 3responsiveness of exclusively N2-fixing and NO3--fed plants. For this purpose, 4exclusively N2-fixingand NO3--fed (10 mM) pea (Pisum sativumL.) plants were 5exposed to elevated [CO2] (1000 mol mol-1versus360 mol mol-1CO2). Gas 6exchange analyses, together with carbohydrate, nitrogen, total soluble proteins and 7amino acids were determined in leaves, roots and nodules. The data obtained revealed 8that although exposure to elevated [CO2] increased total dry mass (DM)in both N 9treatments, photosynthetic activity was down-regulated in NO3--fed plants, whereas N2-10fixing plants were capable of maintaining enhanced photosynthetic rates under elevated 11[CO2]. In the case of N2-fixing plants, the enhanced C sink strength of nodules enabled 12the avoidance of harmful leaf carbohydrate build up. On the other hand, in NO3--fed 13plants, elevated [CO2] caused a large increase in sucrose and starch. The increase in root 14DM did not contribute to stimulation ofC sinks in these plants. Although N2fixation 15matched plant N requirementswith the consequent increase in photosynthetic rates, in 16NO3--fed plants, exposure to elevated [CO2] negatively affected N assimilationwith the 17consequent photosynthetic down-regulation.
  • PublicationOpen Access
    Caracterización de opus tesselatum procedentes de Ávila, España
    (Universidad Autónoma de Madrid, 2014) Soto García, María de los Reyes de; Petit-Domínguez, M. Dolores; De Soto García, Isabel Sonsoles; García Giménez, Rosario; Rucandio, Isabel; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Se han estudiado diversas muestras de Opus tesselatum procedentes de excavaciones arqueológicas de urgencia en Ávila (España) para determinar su origen y las tecnologías de producción utilizadas en su fabricación. Las teselas se han caracterizado por Espectrometría de Masas con fuente de Plasma de Acoplamiento Inductivo (ICP-MS), Difracción de Rayos X (XRD) y Espectrofotometría. Las muestras se corresponden con diferentes materiales con orígenes dispares (vidrios y rocas de varias áreas de aprovisionamiento). El color rojo en algunas teselas se debe principalmente a la presencia de cinabrio en su composición, lo que indica un movimiento comercial de materiales desde otras zonas de España ya que este mineral no está presente en las rocas de la provincia de Ávila.
  • PublicationOpen Access
    Vidrios romanos de Bracara Augusta (Portugal): análisis arqueométrico
    (Universidad Nacional de Educación a Distancia (UNED), 2014) García Giménez, Rosario; Petit-Domínguez, M. Dolores; De Soto García, Isabel Sonsoles; Rucandio, Isabel; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    En este trabajo se han estudiado vidrios romanos de Bracara Augusta, actualmente Braga (Portugal), a través de su composición química, analizando los constituyentes mayoritarios, minoritarios y traza mediante espectrometría de plasma-masas (ICP-MS). Los resultados obtenidos han sido tratados estadísticamente, por un lado realizando diversos análisis univariantes, y por otro llevando a cabo una clasificación de las muestras mediante análisis de clasificación jerárquica y varios análisis discriminantes. Se llega a la conclusión de que, si bien todas las muestras de vidrio presentan una composición parecida en cuanto a los elementos mayoritarios, existen algunas diferencias significativas tanto en éstos como en los elementos minoritarios estudiados que permiten su clasificación. Además, mediante el análisis discriminante se establecen grupos en función de la datación de los vidrios y se pueden incluir en ellos las muestras previamente no datadas en los grupos anteriores.
  • PublicationOpen Access
    Integration of a communal henhouse and community composter to increase motivation in recycling programs: overview of a three-year pilot experience in Noáin (Spain)
    (MDPI, 2018) Storino, Francesco; Plana, Ramón; Aparicio Tejo, Pedro María; Muro Erreguerena, Julio; Irigoyen Iriarte, Ignacio; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Producción Agraria; Nekazaritza Ekoizpena
    This paper presents a three-year pilot experience of a new municipal waste management system developed in Navarre, Spain that integrates composting and hens. The aim of this new system is to motivate the general public to participate more in waste prevention programs. The Composter-Henhouse (CH) is a compact facility comprised of a henhouse and three composters. This is shared by 30 families who provide the organic part of their kitchen waste to feed the hens. Hens help speed up the composting process by depositing their droppings and turning the organic residue into compost. This study assesses the CH in terms of treatment capacity, the technical adequacy of the composting process, the quality and safety of the compost obtained and some social aspects. Over three years, the CH has managed nearly 16.5 tons of organic waste and produced approximately 5600 kg of compost and more than 6000 high-quality fresh eggs. No problems or nuisances have been reported and the level of animal welfare has been very high. The follow up of the composting process (temperature, volume reduction and compost maturity) and a physicochemical and microbiological analysis of the compost have ensured the proper management of the process. The level of involvement and user satisfaction has been outstanding and the project has presented clear social benefits.
  • PublicationOpen Access
    Complementary evaluation of iron deficiency root responses to assess the effectiveness of different iron foliar applications for chlorosis remediation
    (Frontiers Media, 2018) Fuentes, Marta; Bacaicoa, Eva; Rivero Marcos, Mikel; Zamarreño, Ángel M.; García Mina, José M.; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Iron deficiency in plants is caused by a low availability of iron in the soil, and its main visual symptom is leaf yellowing due to a decrease in chlorophyll content, along with a reduction in plant growth and fruit quality. Foliar sprays with Fe compounds are an economic alternative to the treatment with expensive synthetic Fe-chelates applied to the soil, although the efficacy of foliar treatments is rather limited. Generally, plant response to Fe-foliar treatments is monitored by measuring chlorophyll content (or related parameters as SPAD index). However, different studies have shown that foliar Fe sprays cause a local regreening and that translocation of the applied Fe within the plant is quite low. In this context, the aim of this study was to assess the effects of foliar applications of different Fe compounds [FeSO4, Fe(III)-EDTA, and Fe(III)-heptagluconate] on Fe-deficient cucumber plants, by studying the main physiological plant root responses to Fe deficiency [root Fe(III) chelate reductase (FCR) activity; acidification of the nutrient solution; and expression of the Fe deficiency responsive genes encoding FCR, CsFRO1, Fe(II) root transporter CsIRT1, and two plasma membrane H+-ATPases, CsHA1 and CsHA2], along with SPAD index, plant growth and Fe content. The results showed that the overall assessment of Fe-deficiency root responses improved the evaluation of the efficacy of the Fe-foliar treatments compared to just monitoring SPAD indexes. Thus, FCR activity and expression of Fe-deficiency response genes, especially CsFRO1 and CsHA1, preceded the trend of SPAD index and acted as indicators of whether the plant was sensing or not metabolically active Fe due to the treatments. Principal component analysis of the data also provided a graphical tool to evaluate the evolution of plant responses to foliar Fe treatments with time.
  • PublicationOpen Access
    Elevated CO2 improved the growth of a double nitrate reductase defective mutant of Arabidopsis thaliana: the importance of maintaining a high energy status
    (Elsevier, 2017) Jáuregui Mosquera, Iván; Aparicio Tejo, Pedro María; Baroja Fernández, Edurne; Ávila, Concepción; Aranjuelo Michelena, Iker; Natura Ingurunearen Zientziak; Ciencias del Medio Natural; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Impairments in leaf nitrogen (N) assimilation in C3 plants have been identified as processes conditioning photosynthesis under elevated [CO2], especially when N is supplied as nitrate. Leaf N status is usually improved under ammonium nutrition and elevated [CO2]. However, ammonium fertilization is usually accompanied by the appearance of oxidative stress symptoms, which constrains plant development. To understand how the limitations of direct fertilization with ammonium (growth reduction attributed to ammonium toxicity) can be overcome, the effects of elevated [CO2] (800 ppm) exposure were studied in the Arabidopsis thaliana double nitrate reductase defective mutant, nia1-1/chl3-5 (which preferentially assimilates ammonium as its nitrogen source). Analysis of the physiology, metabolites and gene expression was carried out in roots and shoot organs. Our study clearly showed that elevated [CO2] improved the inhibited phenotype of the nitrate reductase double mutant. Both the photosynthetic rates and the leaf N content of the NR mutant under elevated CO2 were similar to wild type plants. The growth of the nitrate reductase mutant was linked to its ability to overcome ammonium-associated photoinhibition processes at 800 ppm [CO2]. More specifically: (i) the capacity of NR mutants to equilibrate energy availability, as reflected by the electron transport equilibrium reached (photosynthesis, photorespiration and respiration), (ii) as well as by the upregulation of genes involved in stress tolerance were identified as the processes involved in the improved performance of NR mutants.
  • PublicationOpen Access
    Effect of including whole linseed and vitamin E in the diet of young bulls slaughtered at two fat covers on the sensory quality of beef packaged in two different packaging systems
    (Wiley, 2017) Albertí, P.; Campo, María M.; Beriain Apesteguía, María José; Ripoll, Guillermo; Sañudo Astiz, Carlos; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Background: Forty-six Pirenaica young bulls, slaughtered at two levels of fatness (3 and 4 mm), were used to evaluate theeffect of the inclusion of 50 g kg−1 linseed alone or with 200 IU vitamin E kg−1 in the concentrate and of the meat packaging system (vacuum or modified atmosphere packaging (MAP)) on the beef sensory quality. Results: The inclusion of linseed or supplementation with vitamin E in the concentrate induced no significant differences in the main meat sensory scores and overall appraisal except under MAP, where small differences due to concentrate ingredients were found in juiciness and metallic flavor intensity. Extending the display time up to 4 or 8 days in high-oxygen MAP had detrimental effects on sensory attributes. Meat from animals with 4 mm fat cover depth were rated more tender and juicy, less fibrous and with a higher intensity of beef flavor and rancid odor than meat from 3 mm fat cover bulls when both samples were vacuum packaged. Conclusion: The inclusion of 50 g kg−1 linseed in the concentrate fed to bulls had no detrimental effect on the beef sensory quality. The vacuum-packaged meat of bulls slaughtered at 4 mm fat cover was rated higher on sensory analysis than that at3 mm fat cover.
  • PublicationOpen Access
    Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in Arabidopsis thaliana and Brassica oleracea
    (Oxford University Press, 2016) Marino Bilbao, Daniel; Ariz Arnedo, Idoia; Lasa Larrea, Berta; Santamaría Martínez, Enrique; Aparicio Tejo, Pedro María; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Accessing different nitrogen (N) sources involves a profound adaptation of plant metabolism. In this study, a quantitative proteomic approach was used to further understand how the model plant Arabidopsis thaliana adjusts to different N sources when grown exclusively under nitrate or ammonium nutrition. Proteome data evidenced that glucosinolate metabolism was differentially regulated by the N source and that both TGG1 and TGG2 myrosinases were more abundant under ammonium nutrition, which is generally considered to be a stressful situation. Moreover, Arabidopsis plants displayed glucosinolate accumulation and induced myrosinase activity under ammonium nutrition. Interestingly, these results were also confirmed in the economically important crop broccoli (Brassica oleracea var. italica). Moreover, these metabolic changes were correlated in Arabidopsis with the differential expression of genes from the aliphatic glucosinolate metabolic pathway. This study underlines the importance of nitrogen nutrition and the potential of using ammonium as the N source in order to stimulate glucosinolate metabolism, which may have important applications not only in terms of reducing pesticide use, but also for increasing plants’ nutritional value.
  • PublicationOpen Access
    Linkages between climate, seasonal wood formation and mycorrhizal mushroom yields
    (Elsevier, 2016) Primicia Alvarez, Irantzu; Camarero, Jesús Julio; Martínez de Aragón, Juan; Miguel, Sergio de; Bonet, José Antonio; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Fungi provide important forest ecosystem services worldwide. In Mediterranean pine forests, predicted warmer and drier conditions could lead to a decline in mushroom yields. Climate is a key factor regulating both tree growth and fungal yields, particularly in drought-prone Mediterranean ecosystems. However, the responses of forest growth and mushroom production to climate depend on the differences among tree and fungal species and functional groups (e.g., mycorrhizal vs. saprotrophic), forest types, as well as depending on site conditions. Here we investigate how climatic conditions drive seasonal wood formation (earlywood −EW− and latewood −LW− production) and mycorrhizal mushroom production, to disentangle if growth and fungal yields are related. This assessment was done in Mediterranean forests dominated by four pine species in two areas located in Catalonia (NE Spain) representing mesic and xeric conditions and encompassing wide ecological gradients. The data consisted of 7-year to 13-year long inventories of mushroom production. EW production was favoured by cold and wet climate conditions during the previous fall and winter, and during the current spring and summer. LW production was enhanced by warm and humid conditions from spring to early fall. Mushroom yield was improved by wet late-summer and fall conditions, mainly in the most xeric area. This study confirms the ample differences found in tree growth and fungal production along ecological and climatic gradients. Clear relationships between mycorrhizal fungal yields and tree growth were mostly observed in specific sites characterized by severe summer drought. Specifically, latewood production seems to be the tree-ring variable most tightly linked to mycorrhizal fungal yield in drought-prone areas.
  • PublicationOpen Access
    Maintaining ecosystem function by restoring forest biodiversity: reviewing decision-support tools that link biology, hydrology and geochemistry
    (InTech, 2015) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Welham, Clive; Wang, Mike; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Not all forest models are applicable to a meta-modelling approach. Hence, the objective of the research presented here was to identify and compare the available forest models already being used in research, and to evaluate their suitability for use as decision-support tools in designing successful restoration plans to bring forest biodiversity and function back to sites disturbed by industrial activities (mining in particular).