Jorge Ulecia, Juan Carlos
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Jorge Ulecia
First Name
Juan Carlos
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access A combined fractional step domain decomposition method for the numerical integration of parabolic problems(Springer, 2004) Portero Egea, Laura; Bujanda Cirauqui, Blanca; Jorge Ulecia, Juan Carlos; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaIn this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.Publication Open Access Avoiding the order reduction when solving second-order in time PDEs with Fractional Step Runge–Kutta–Nyström methods(Elsevier, 2016) Moreta, M. Jesús; Bujanda Cirauqui, Blanca; Jorge Ulecia, Juan Carlos; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaWe study some of the main features of Fractional Step Runge–Kutta–Nyström methods when they are used to integrate Initial–Boundary Value Problems of second order in time, in combination with a suitable spatial discretization. We focus our attention on the order reduction phenomenon, which appears if classical boundary conditions are taken at the internal stages. This drawback is specially hard when time dependent boundary conditions are considered. In this paper we present an efficient technique, very simple and computationally cheap, which allows us to avoid the order reduction; such technique consists in modifying the boundary conditions for the internal stages of the method.Publication Embargo New fractional step Runge-Kutta-Nyström methods up to order three(Elsevier, 2020) Bujanda Cirauqui, Blanca; Moreta, M. Jesús; Jorge Ulecia, Juan Carlos; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasFractional Step Runge–Kutta–Nyströ (FSRKN) methods have been revealed to be an excellent option to integrate numerically many multidimensional evolution models governed by second order in time partial differential equations. These methods, combined with suitable spatial discretizations, lead to strong computational cost reductions respect to many classical implicit time integrators. In this paper, we present the construction process of several implicit FSRKN methods of two and three levels which attain orders up to three and satisfy adequate stability properties. We have also performed some numerical experiments in order to show the unconditionally convergent behavior of these schemes as well as their computational advantages.