A combined fractional step domain decomposition method for the numerical integration of parabolic problems

Date

2004

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión aceptada / Onetsi den bertsioa

Project identifier

Gobierno de Navarra//134%2F2002
Impacto
OpenAlexGoogle Scholar
cited by count

Abstract

In this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.

Description

Keywords

Parabolic problemas, Numerical integration

Department

Ingeniería Matemática e Informática / Matematika eta Informatika Ingeniaritza

Faculty/School

Degree

Doctorate program

item.page.cita

Portero, L., Bujanda, B., & Jorge, J. C. (2004). A combined fractional step domain decomposition method for the numerical integration of parabolic problems. En R. Wyrzykowski, J. Dongarra, M. Paprzycki, & J. Waśniewski (Eds.), Parallel Processing and Applied Mathematics (Vol. 3019, pp. 1034-1041). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_134

item.page.rights

© Springer-Verlag Berlin Heidelberg 2004

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.