Elosúa Aguado, César

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Elosúa Aguado

First Name

César

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 28
  • PublicationOpen Access
    Digital escape room project: engaging electronics for university students
    (IEEE, 2024-08-01) Urrutia Azcona, Aitor; Ruete Ibarrola, Leyre; López Torres, Diego; Andueza Unanua, Ángel María; Elosúa Aguado, César; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PINNE2022-UPNA
    This work proposes the implementation of a project-based learning methodology for the practical part of digital electronics subjects in the first years of undergraduate studies. Through the project called Digital Escape Room, a series of challenges and exercises are developed in a modular way that the students must solve in order to create a final design in Quartus software and demonstrate it on an FPGA-based device. The implementation of this project has allowed us to see that the academic results and the satisfaction and motivation of the students have improved significantly compared to previous years.
  • PublicationOpen Access
    Microstructured optical fiber sensor for soil moisture measurements
    (Optical Society of America, 2018) López Aldaba, Aitor; López Torres, Diego; Campo-Bescós, Miguel; López Rodríguez, José Javier; Yerro Lizarazu, David; Elosúa Aguado, César; Arregui San Martín, Francisco Javier; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniería
    A discrete sensor based on a Sn0₂-FP (Fabry-Pérot) cavity is presented and characterized in real soil conditions. Results are compared, for the first time to our knowledge, with a commercial capacitive sensor and gravimetric measurements.
  • PublicationOpen Access
    Piezotronic, ZnO overlaid Bragg grating organic vapor sensors
    (IEEE, 2023) López Torres, Diego; Elosúa Aguado, César; Pappas, Georgios A.; Konstantaki, Maria; Klini, Argyro; Lappas, Alexandros; Arregui San Martín, Francisco Javier; Pissadakis, Stavros; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We present a zinc oxide (ZnO) out-cladding, overlaid optical fiber Bragg grating sensor, for the detection of vapors of common alcohols and acetone at concentrations lower than 25 ppm while operating at room temperature (RT). The optical fiber sensing results indicate a chemostriction effect occurring in the ZnO layer when exposed to volatile organic compounds (VOCs), which in turn induces shifts in the cladding, and most importantly, in the core confined, Bragg mode. The sensor exhibits a maximum sensitivity of ∼1 pm/ppm to ethanol vapors, with exposure to other alcohol vapors (isopropanol and methanol) showing lower sensitivities; also, response to acetone vapors was traced at ∼0.5 pm/ppm. X-ray diffraction (XRD) measurements of the ZnO nanolayer revealed that, in saturated ethanol vapors atmosphere, the polycrystalline ZnO film undergoes a contraction by 0.6% of the interplanar distance corresponding to the (002) crystalline direction, denoting the chemostrictive effect through an underlying piezotronic mechanism. XRD measurements and optical fiber sensing data are further correlated by numerical simulations carried out, so to study the strain interactions of the ZnO layer with the silica glass optical fiber.
  • PublicationOpen Access
    Optical sensors based on lossy-mode resonances
    (Elsevier Science, 2017) Matías Maestro, Ignacio; Ascorbe Muruzabal, Joaquín; Acha Morrás, Nerea de; López Torres, Diego; Zubiate Orzanco, Pablo; Sánchez Zábal, Pedro; Urrutia Azcona, Aitor; Socorro Leránoz, Abián Bentor; Rivero Fuente, Pedro J.; Hernáez Sáenz de Zaitigui, Miguel; Elosúa Aguado, César; Goicoechea Fernández, Javier; Bariáin Aisa, Cándido; Corres Sanz, Jesús María; Ruiz Zamarreño, Carlos; Arregui San Martín, Francisco Javier; Del Villar, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC
  • PublicationOpen Access
    A nanocomposite sol-gel film based on PbS quantum dots embedded into an amorphous host inorganic matrix
    (MDPI, 2023) Mihail, Elisa; Sava, Bogdan Alexandru; Eftimie, Mihai; Nicoara, Adrian Ionut; Vasiliu, Ileana Cristina; Rusu, Madalin Ion; Bartha, Cristina; Enculescu, Monica; Kuncser, Andrei Cristian; Oane, Mihai; Elosúa Aguado, César; López Torres, Diego; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this study, a sol-gel film based on lead sulfide (PbS) quantum dots incorporated into a host network was synthesized as a special nanostructured composite material with potential applications in temperature sensor systems. This work dealt with the optical, structural, and morphological properties of a representative PbS quantum dot (QD)-containing thin film belonging to the Al2O3–SiO2–P2O5 system. The film was prepared using the sol-gel method combined with the spin coating technique, starting from a precursor solution containing a suspension of PbS QDs in toluene with a narrow size distribution and coated on a glass substrate in a multilayer process, followed by annealing of each deposited layer. The size (approximately 10 nm) of the lead sulfide nanocrystallites was validated by XRD and by the quantum confinement effect based on the band gap value and by TEM results. The photoluminescence peak of 1505 nm was very close to that of the precursor PbS QD solution, which demonstrated that the synthesis route of the film preserved the optical emission characteristic of the PbS QDs. The photoluminescence of the lead sulfide QD-containing film in the near infrared domain demonstrates that this material is a promising candidate for future sensing applications in temperature monitoring.
  • PublicationOpen Access
    Enhancement of the sensitivity of a volatile organic compounds MOF sensor by means of its structure
    (MDPI, 2019) López Torres, Diego; López Aldaba, Aitor; Elosúa Aguado, César; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this paper, we experimentally compare several core structures of Microstructured Optical Fibers (MOFs) for low-finesse Fabry-Pérot (FP) sensors. These sensors are designed for Volatile Organic Compounds (VOCs) measurements. We deposit Indium Tin Oxide (ITO) thin films by sputtering on the MOFs and different optical phase responses of the FP were measured for saturated atmospheres of ethanol. The sensitivity of the developed sensors is demonstrated to depend on the geometry and the dimensions of the MOF-cores. The sensors show recovery times under 100 s and the baselines are fully recovered after exposure to VOC.
  • PublicationOpen Access
    SnO2-MOF-Fabry-Pérot humidity optical sensor system based on Fast Fourier transform technique
    (SPIE, 2016) López Aldaba, Aitor; López Torres, Diego; Ascorbe Muruzabal, Joaquín; Rota Rodrigo, Sergio; Elosúa Aguado, César; López-Amo Sáinz, Manuel; Arregui San Martín, Francisco Javier; Corres Sanz, Jesús María; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In this paper, a new sensor system for relative humidity measurements based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Pérot (FP) sensing head is presented and characterized. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method is low-sensitive to signal amplitude variations and also avoids the necessity of tracking the evolution of peaks and valleys in the spectrum. The sensor is operated within a wide humidity range (20%-90% relative humidity) with a maximum sensitivity achieved of 0.14rad/%. The measurement method uses a commercial optical interrogator as the only active element, this compact solution allows real time analysis of the data.
  • PublicationOpen Access
    Optical fiber sensors based on microstructured optical fibers to detect gases and volatile organic compounds: a review
    (MDPI, 2020) López Torres, Diego; Elosúa Aguado, César; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y Matemáticas
    Since the first publications related to microstructured optical fibers (MOFs), the development of optical fiber sensors (OFS) based on them has attracted the interest of many research groups because of the market niches that can take advantage of their specific features. Due to their unique structure based on a certain distribution of air holes, MOFs are especially useful for sensing applications: on one hand, the increased coupling of guided modes into the cladding or the holes enhances significantly the interaction with sensing films deposited there; on the other hand, MOF air holes enhance the direct interaction between the light and the analytes that get into in these cavities. Consequently, the sensitivity when detecting liquids, gasses or volatile organic compounds (VOCs) is significantly improved. This paper is focused on the reported sensors that have been developed with MOFs which are applied to detection of gases and VOCs, highlighting the advantages that this type of fiber offers.
  • PublicationOpen Access
    From superhydrophilic to superhydrophobic surfaces by means of polymeric Layer-by-Layer films
    (Elsevier, 2015) López Torres, Diego; Elosúa Aguado, César; Hernáez Sáenz de Zaitigui, Miguel; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
  • PublicationOpen Access
    Route towards a label-free optical waveguide sensing platform based on lossy mode resonances
    (IFSA Publishing, 2019) Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Ozcariz Celaya, Aritz; Elosúa Aguado, César; Socorro Leránoz, Abián Bentor; Urrutia Azcona, Aitor; López Torres, Diego; Acha Morrás, Nerea de; Ascorbe Muruzabal, Joaquín; Vitoria Pascual, Ignacio; Imas González, José Javier; Corres Sanz, Jesús María; Díaz Lucas, Silvia; Hernáez Sáenz de Zaitigui, Miguel; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Del Villar, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua,0011-1365-2017- 000117; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26
    According to recent market studies of the North American company Allied Market Research, the field of photonic sensors is an emerging strategic field for the following years and it is expected to garner $18 billion by 2021. The integration of micro and nanofabrication technologies in the field of sensors has allowed the development of new technological concepts such as lab-on-a-chip which have achieved extraordinary advances in terms of detection and applicability, for example in the field of biosensors. This continuous development has allowed that equipment consisting of many complex devices that occupied a whole room a few years ago, at present it is possible to handle them in the palm of the hand; that formerly long duration processes are carried out in a matter of milliseconds and that a technology previously dedicated solely to military or scientific uses is available to the vast majority of consumers. The adequate combination of micro and nanostructured coatings with optical fiber sensors has permitted us to develop novel sensing technologies, such as the first experimental demonstration of lossy mode resonances (LMRs) for sensing applications, with more than one hundred citations and related publications in high rank journals and top conferences. In fact, fiber optic LMR-based devices have been proven as devices with one of the highest sensitivity for refractometric applications. Refractive index sensitivity is an indirect and simple indicator of how sensitive the device is to chemical and biological species, topic where this proposal is focused. Consequently, the utilization of these devices for chemical and biosensing applications is a clear opportunity that could open novel and interesting research lines and applications as well as simplify current analytical methodologies. As a result, on the basis of our previous experience with LMR based sensors to attain very high sensitivities, the objective of this paper is presenting the route for the development of label-free optical waveguide sensing platform based on LMRs that enable to explore the limits of this technology for bio-chemosensing applications.