Elosúa Aguado, César

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Elosúa Aguado

First Name

César

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 47
  • PublicationOpen Access
    Microstructured optical fiber sensor for soil moisture measurements
    (Optical Society of America, 2018) López Aldaba, Aitor; López Torres, Diego; Campo-Bescós, Miguel; López Rodríguez, José Javier; Yerro Lizarazu, David; Elosúa Aguado, César; Arregui San Martín, Francisco Javier; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniería
    A discrete sensor based on a Sn0₂-FP (Fabry-Pérot) cavity is presented and characterized in real soil conditions. Results are compared, for the first time to our knowledge, with a commercial capacitive sensor and gravimetric measurements.
  • PublicationOpen Access
    Comparison between capacitive and microstructured optical fiber soil moisture sensors
    (MDPI, 2018) López Aldaba, Aitor; López Torres, Diego; Campo-Bescós, Miguel; López Rodríguez, José Javier; Yerro Lizarazu, David; Elosúa Aguado, César; Arregui San Martín, Francisco Javier; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa eta Elektronikoa; Landa Ingeniaritza eta Proiektuak; Institute of Smart Cities - ISC; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería Eléctrica y Electrónica; Proyectos e Ingeniería Rural
    Soil moisture content has always been an important parameter to control because it is a deterministic factor for site-specific irrigation, seeding, transplanting, and compaction detection. In this work, a discrete sensor that is based on a SnO2–FP (Fabry-Pérot) cavity is presented and characterized in real soil conditions. As far as authors know, it is the first time that a microstructured optical fiber is used for real soil moisture measurements. Its performance is compared with a commercial capacitive soil moisture sensor in two different soil scenarios for two weeks. The optical sensor shows a great agreement with capacitive sensor’s response and gravimetric measurements, as well as a fast and reversible response; moreover, the interrogation technique allows for several sensors to be potentially multiplexed, which offers the possibility of local measurements instead of volumetric: it constitutes a great tool for real soil moisture monitoring.
  • PublicationOpen Access
    Development of an aptamer based luminescent optical fiber sensor for the continuous monitoring of Hg2+ in aqueous media
    (MDPI, 2020) Acha Morrás, Nerea de; Elosúa Aguado, César; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    A fluorescent optical fiber sensor for the detection of mercury (Hg2+) ions in aqueous solutions is presented in this work. The sensor was based on a fluorophore-labeled thymine (T)-rich oligodeoxyribonucleotide (ON) sequence that was directly immobilized onto the tip of a tapered optical fiber. In the presence of mercury ions, the formation of T–Hg2+-T mismatches quenches the fluorescence emission by the labeled fluorophore, which enables the measurement of Hg2+ ions in aqueous solutions. Thus, in contrast to commonly designed sensors, neither a fluorescence quencher nor a complementary ON sequence is required. The sensor presented a response time of 24.8 seconds toward 5 × 10−12 M Hg2+. It also showed both good reversibility (higher than the 95.8%) and selectivity: the I0 /I variation was 10 times higher for Hg2+ ions than for Mn2+ ions. Other contaminants examined (Co2+, Ag+, Cd2+, Ni2+, Ca2+, Pb2+, Mn2+, Zn2+, Fe3+, and Cu2+) presented an even lower interference. The limit of detection of the sensor was 4.73 × 10−13 M Hg2+ in buffer solution and 9.03 × 10−13 M Hg2+ in ultrapure water, and was also able to detect 5 × 10−12 M Hg2+ in tap water.
  • PublicationOpen Access
    Luminescence-based optical sensors fabricated by means of the layer-by-layer nano-assembly technique
    (MDPI, 2017) Acha Morrás, Nerea de; Elosúa Aguado, César; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    Luminescence-based sensing applications range from agriculture to biology, including medicine and environmental care, which indicates the importance of this technique as a detection tool. Luminescent optical sensors are required to be highly stable, sensitive, and selective, three crucial features that can be achieved by fabricating them by means of the layer-by-layer nano-assembly technique. This method permits us to tailor the sensors0 properties at the nanometer scale, avoiding luminophore aggregation and, hence, self-quenching, promoting the diffusion of the target analytes, and building a barrier against the undesired molecules. These characteristics give rise to the fabrication of custom-made sensors for each particular application.
  • PublicationOpen Access
    SnO2-MOF-Fabry-Pérot humidity optical sensor system based on Fast Fourier transform technique
    (SPIE, 2016) López Aldaba, Aitor; López Torres, Diego; Ascorbe Muruzabal, Joaquín; Rota Rodrigo, Sergio; Elosúa Aguado, César; López-Amo Sáinz, Manuel; Arregui San Martín, Francisco Javier; Corres Sanz, Jesús María; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In this paper, a new sensor system for relative humidity measurements based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Pérot (FP) sensing head is presented and characterized. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method is low-sensitive to signal amplitude variations and also avoids the necessity of tracking the evolution of peaks and valleys in the spectrum. The sensor is operated within a wide humidity range (20%-90% relative humidity) with a maximum sensitivity achieved of 0.14rad/%. The measurement method uses a commercial optical interrogator as the only active element, this compact solution allows real time analysis of the data.
  • PublicationOpen Access
    Title enhancement of the sensitivity of a volatile organic compounds MOF-sensor by means of its structure
    (MDPI, 2017) López Torres, Diego; López Aldaba, Aitor; Elosúa Aguado, César; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa eta Elektronikoa; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica y Electrónica; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this paper, we experimentally compare several core structures of Microstructured Optical Fibers (MOFs) for low-finesse Fabry-Pérot (FP) sensors. These sensors are designed for Volatile Organic Compounds (VOCs) measurements. We deposit Indium Tin Oxide (ITO) thin films by sputtering on the MOFs and different optical phase responses of the FP were measured for saturated atmospheres of ethanol. The sensitivity of the developed sensors is demonstrated to depend on the geometry and the dimensions of the MOF-cores. The sensors show recovery times under 100 s and the baselines are fully recovered after exposure to VOC.
  • PublicationOpen Access
    Relative humidity multi-point optical sensors system based on Fast Fourier multiplexing technique
    (SPIE, 2017) López Aldaba, Aitor; López Torres, Diego; Elosúa Aguado, César; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Arregui San Martín, Francisco Javier; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In this paper, a new multipoint optical fiber system for relative humidity measurements based on Sn02-FP (Fabry-Pérot) sensing heads and an optical interrogator as single active device is presented and characterized. The interrogation of the sensing heads is carried out by monitoring the Fast Fourier Transform phase variations of the FP (Fabry-Pérot) interference frequencies. This method allows to multiplex several sensors with different wavelength spacing interference pattern. The sensors operate within a wide humidity range (20%-90% relative humidity) with low crosstalk between them. Five sensing heads have been measured using two different channels of the optical interrogator. The availability of four channels in the interrogator allows to multiplex a higher number of sensors, reducing proportionally the cost of each sensing point.
  • PublicationOpen Access
    SnO2-MOF-Fabry-Perot optical sensor for relative humidity measurements
    (Elsevier, 2018) López Aldaba, Aitor; López Torres, Diego; Elosúa Aguado, César; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Arregui San Martín, Francisco Javier; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In this paper, a new optical fiber sensor for relative humidity measurements is presented and characterized. The sensor is based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Pérot (FP) sensing head. The feasibility of the device as a breathing sensor is also experimentally demonstrated. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method substitutes the necessity of tracking the optical spectrum peaks or valleys, which can be a handicap when noise or multiple contributions are present: therefore, it is low-sensitive to noise and to artifacts signal amplitude. The sensor shows a linear behavior in a wide relative humidity range (20%–90% relative humidity) in which the sensitivity is 0.14 rad/%; the maximum observed instability is 0.007 rad, whereas the highest hysteresis is 5% RH. The cross correlation with temperature is also considered and a method to lower its influence is proposed. For human breathing measurement, the registered rising and recovery times are 370 ms and 380 ms respectively.
  • PublicationOpen Access
    Volatile organic compound optical fiber sensors: a review
    (MDPI, 2006) Elosúa Aguado, César; Matías Maestro, Ignacio; Bariáin Aisa, Cándido; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Volatile organic compound (VOC) detection is a topic of growing interest with applications in diverse fields, ranging from environmental uses to the food or chemical industries. Optical fiber VOC sensors offering new and interesting properties which overcame some of the inconveniences found on traditional gas sensors appeared over two decades ago. Thanks to its minimum invasive nature and the advantages that optical fiber offers such as light weight, passive nature, low attenuation and the possibility of multiplexing, among others, these sensors are a real alternative to electronic ones in electrically noisy environments where electronic sensors cannot operate correctly. In the present work, a classification of these devices has been made according to the sensing mechanism and taking also into account the sensing materials or the different methods of fabrication. In addition, some solutions already implemented for the detection of VOCs using optical fiber sensors will be described with detail.
  • PublicationOpen Access
    Determination of hazardous vapors from the thermal decomposition of organochlorinated silica xerogels with adsorptive properties
    (Elsevier, 2024) Rosales Reina, María Beatriz; Cruz Quesada, Guillermo; Pujol, Pablo; Reinoso, Santiago; Elosúa Aguado, César; Arzamendi Manterola, Gurutze; López Ramón, María Victoria; Garrido Segovia, Julián José; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    The incorporation of organic groups into sol-gel silica materials is known to have a noticeable impact on the properties and structure of the resulting xerogels due to the combination of the properties inherent to the organic fragments (functionality and flexibility) with the mechanical and structural stability of the inorganic matrix. However, the reduction of the inorganic content in the materials could be detrimental to their thermal stability properties, limiting the range of their potential applications. Therefore, this work aims to evaluate the thermal stability of hybrid inorganic-organic silica xerogels prepared from mixtures of tetraethoxysilane and organochlorinated triethoxysilane precursors. To this end, a series of four materials with a molar percentage of organochlorinated precursor fixed at 10%, but differing in the type of organic group (chloroalkyls varying in the alkyl-chain length and chlorophenyl), has been selected as model case study. The gases and vapors released during the thermal decomposition of the samples under N2 atmosphere have been analyzed and their components determined and quantified using a thermogravimetric analyzer coupled to a Fourier-transform infrared spectrophotometer and to a gas chromatography-mass spectrometry unit. These analyses have allowed to identify up to three different thermal events for the pyrolysis of the organochlorinated xerogel materials and to elucidate the reaction pathways associated with such processes. These mechanisms have been found to be strongly dependent on the specific nature of the organic group.