Bustince Sola, Humberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bustince Sola
First Name
Humberto
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
205 results
Search Results
Now showing 1 - 10 of 205
Publication Embargo Degree of totalness: how to choose the best admissible permutation for vector fuzzy integration(Elsevier, 2023-08-30) Ferrero Jaurrieta, Mikel; Horanská, Lubomíra; Lafuente López, Julio; Mesiar, Radko; Pereira Dimuro, Graçaliz; Takáč, Zdenko; Gómez Fernández, Marisol; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThe use of aggregation operators that require ordering of the data brings a problem when the structures to be aggregated are multi-valued, since there may be several admissible orders. To addressing this problem, the concept of admissible permutation was introduced for intervals. In this paper we extend this concept to vector domain. However, the problem of selecting the best possible permutation is still an open problem. In this paper we present a novel concept in order to choose the best admissible permutation for vectors: the degree of totalness. This concept allows us to represent to which degree the admissible permutation reorder given vectors as a chain with respect to the partial order. Finally, from the best admissible permutation we construct the Choquet integral.Publication Open Access Gertakari errepresiboak kuantifikatzea: Nafarroako Memoria Historikoaren Dokumentu Funtsaren azalpena eta erronkak(2019) Majuelo Gil, Emilio; Mendiola Gonzalo, Fernando; Garmendia Amutxastegi, Gotzon; Piérola Narvarte, Gemma; García Funes, Juan Carlos; Yániz Berrio, Edurne; Pérez Ibarrola, Nerea; Barrenechea Tartas, Edurne; Rodríguez Martínez, Iosu; Sesma Redín, Rubén; Bustince Sola, Humberto; Ciencias Humanas y de la Educación; Giza eta Hezkuntza Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn este documento se presentan los fundamentos historiográficos y metodológicos de la base de datos del Fondo Documental de la Memoria Histórica en Navarra, desarrollada en la Universidad Pública de Navarra como consecuencia del encargo institucional realizado por el Parlamento y el Gobierno de Navarra. Con este fin, se ha procedido a elaboraruna base de datos que permita una ágil consulta por parte de diferentes agentes sociales, institucionales y académicos en torno a la represión franquista, intentando incluir en ella la gran variedad de prácticas represivas que la historiografía ha ido identificando. Primeramente, se presenta un balance sobre la publicación, en los últimos años, de diferentes bases de datos on-line en torno a las víctimas de la guerra civil y la represión franquista en varias comunidades autónomas. A continuación, se presenta la unidad de análisis de nuestra base de datos, “los hechos represivos”, insertándola en el contexto historiográfico en torno a la represión franquista y los estudios sobre la violencia. En un tercer apartado pasamos a describir las diferentes categorías y subcategorías represivas en las que se enmarcan los hechos represivos, y finalmente se presentan algunas características técnicas de la organización interna de la información y el software de la base de datos.Publication Open Access Fuzzy rule-based classification systems for multi-class problems using binary decomposition strategies: on the influence of n-dimensional overlap functions in the fuzzy reasoning method(Elsevier, 2016) Elkano Ilintxeta, Mikel; Galar Idoate, Mikel; Sanz Delgado, José Antonio; Bustince Sola, Humberto; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y ComputaciónMulti-class classification problems appear in a broad variety of real-world problems, e.g., medicine, genomics, bioinformatics, or computer vision. In this context, decomposition strategies are useful to increase the classification performance of classifiers. For this reason, in a previous work we proposed to improve the performance of FARC-HD (Fuzzy Association Rule-based Classification model for High-Dimensional problems) fuzzy classifier using One-vs-One (OVO) and One-vs-All (OVA) decomposition strategies. As a result of an exhaustive experimental analysis, we concluded that even though the usage of decomposition strategies was worth to be considered, further improvements could be achieved by introducing n-dimensional overlap functions instead of the product t-norm in the Fuzzy Reasoning Method (FRM). In this way, we can improve confidences for the subsequent processing performed in both OVO and OVA. In this paper, we want to conduct a broader study of the influence of the usage of n-dimensional overlap functions to model the conjunction in several Fuzzy Rule-Based Classification Systems (FRBCSs) in order to enhance their performance in multi-class classification problems applying decomposition techniques. To do so, we adapt the FRM of four well-known FRBCSs (CHI, SLAVE, FURIA, and FARC-HD itself). We will show that the benefits of the usage of n-dimensional overlap functions strongly depend on both the learning algorithm and the rule structure of each classifier, which explains why FARC-HD is the most suitable one for the usage of these functions.Publication Open Access An evolutionary underbagging approach to tackle the survival prediction of trauma patients: a case study at the Hospital of Navarre(IEEE, 2019) Sanz Delgado, José Antonio; Galar Idoate, Mikel; Bustince Sola, Humberto; Belzunegui Otano, Tomás; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Gobierno de Navarra / Nafarroako Gobernua, PI-019/11Survival prediction systems are used among emergency services at hospitals in order to measure their quality objectively. In order to do so, the estimated mortality rate given by a prediction model is compared with the real rate of the hospital. Hence, the accuracy of the prediction system is a key factor as more reliable estimations can be obtained. Survival prediction systems are aimed at scoring the severity of patients' injuries. Afterward, this score is used to estimate whether the patient will survive or not. Luckily, the number of patients who survive their injuries is greater than that of those who die. However, this degree of imbalance implies a greater difficulty in learning the prediction models. The aim of this paper is to develop a new prediction system for the Hospital of Navarre with the goal of improving the prediction capabilities of the currently used models since it would imply having a more reliable measurement of its quality. In order to do so, we propose a new strategy to conform an ensemble of classifiers using an evolutionary under sampling process in the bagging methodology. The experimental study is carried out over 462 patients who were treated at the Hospital of Navarre. Our new ensemble approach is an appropriate tool to deal with this problem as it is able to outperform the currently used models by the staff of the hospital as well as several state-of-the-art ensemble approaches designed for imbalanced domains.Publication Open Access Moderate deviation and restricted equivalence functions for measuring similarity between data(Elsevier, 2019) Altalhi, A. H.; Forcén Carvalho, Juan Ignacio; Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Takáč, Zdenko; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasIn this work we study the relation between moderate deviation functions, restricted dissimilarity functions and restricted equivalence functions. We use moderate deviation functions in order to measure the similarity or dissimilarity between a given set of data. We show an application of moderate deviate functions used in the same way as penalty functions to make a final decision from a score matrix in a classification problem.Publication Open Access A proposal for tuning the α parameter in CαC-integrals for application in fuzzy rule-based classification systems(Springer, 2020) Lucca, Giancarlo; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasIn this paper, we consider the concept of extended Choquet integral generalized by a copula, called CC-integral. In particular, we adopt a CC-integral that uses a copula defined by a parameter α, which behavior was tested in a previous work using different fixed values. In this contribution, we propose an extension of this method by learning the best value for the parameter α using a genetic algorithm. This new proposal is applied in the fuzzy reasoning method of fuzzy rule-based classification systems in such a way that, for each class, the most suitable value of the parameter α is obtained, which can lead to an improvement on the system's performance. In the experimental study, we test the performance of 4 different so called CαC-integrals, comparing the results obtained when using fixed values for the parameter α against the results provided by our new evolutionary approach. From the obtained results, it is possible to conclude that the genetic learning of the parameter α is statistically superior than the fixed one for two copulas. Moreover, in general, the accuracy achieved in test is superior than that of the fixed approach in all functions. We also compare the quality of this approach with related approaches, showing that the methodology proposed in this work provides competitive results. Therefore, we demonstrate that CαC-integrals with α learned genetically can be considered as a good alternative to be used in fuzzy rule-based classification systems.Publication Open Access Unsupervised fuzzy measure learning for classifier ensembles from coalitions performance(IEEE, 2020) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Domínguez Catena, Iris; Bustince Sola, Humberto; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13In Machine Learning an ensemble refers to the combination of several classifiers with the objective of improving the performance of every one of its counterparts. To design an ensemble two main aspects must be considered: how to create a diverse set of classifiers and how to combine their outputs. This work focuses on the latter task. More specifically, we focus on the usage of aggregation functions based on fuzzy measures, such as the Sugeno and Choquet integrals, since they allow to model the coalitions and interactions among the members of the ensemble. In this scenario the challenge is how to construct a fuzzy measure that models the relations among the members of the ensemble. We focus on unsupervised methods for fuzzy measure construction, review existing alternatives and categorize them depending on their features. Furthermore, we intend to address the weaknesses of previous alternatives by proposing a new construction method that obtains the fuzzy measure directly evaluating the performance of each possible subset of classifiers, which can be efficiently computed. To test the usefulness of the proposed fuzzy measure, we focus on the application of ensembles for imbalanced datasets. We consider a set of 66 imbalanced datasets and develop a complete experimental study comparing the reviewed methods and our proposal.Publication Open Access De funciones de equivalencia restringida en Lⁿ a medidas de similitud entre multiconjuntos difusos(CAEPIA, 2024) Ferrero Jaurrieta, Mikel; Rodríguez Martínez, Iosu; Bernardini, Ángela; Fernández Fernández, Francisco Javier; López Molina, Carlos; Bustince Sola, Humberto; Takáč, Zdenko; Marco Detchart, Cedric; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCEste artículo es un resumen del trabajo publicado en la revista IEEE Transactions on Fuzzy Systems. En este trabajo, presentamos una contribución a la teoría de las Funciones de Equivalencia Restringida (REF), que permite comparar elementos multivaluados. Extendemos el concepto de REF de L a Ln y presentamos una nueva construcción de similitud en Ln. A partir de esta filosofía se construyen medidas de similitud entre multiconjuntos difusos y se presenta un ejemplo aplicado en el contexto de la difusión anisotrópica de imágenes en color.Publication Open Access Improving the performance of fuzzy rule-based classification systems based on a nonaveraging generalization of CC-integrals named C-F1F2-integrals(IEEE, 2019) Lucca, Giancarlo; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Bedregal, Benjamin; Sanz Delgado, José Antonio; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasA key component of fuzzy rule-based classification systems (FRBCS) is the fuzzy reasoning method (FRM) since it infers the class predicted for new examples. A crucial stage in any FRM is the way in which the information given by the fired rules during the inference process is aggregated. A widely used FRM is the winning rule, which applies the maximum to accomplish this aggregation. The maximum is an averaging operator, which means that its result is within the range delimited by the minimum and the maximum of the aggregated values. Recently, new averaging operators based on generalizations of the Choquet integral have been proposed to perform this aggregation process. However, the most accurate FRBCSs use the FRM known as additive combination that considers the normalized sum as the aggregation operator, which is nonaveraging. For this reason, this paper is aimed at introducing a new nonaveraging operator named C-F1F2-integral, which is a generalization of the Choquet-like Copula-based integral (CC-integral). C-F1F2-integrals present the desired properties of an aggregation-like operator since they satisfy appropriate boundary conditions and have some kind of increasingness property. We show that C-F1F2 -integrals, when used to cope with classification problems, enhance the results of the previous averaging generalizations of the Choquet integral and provide competitive results (even better) when compared with state-of-the-art FRBCSs.Publication Open Access The law of O-conditionality for fuzzy implications constructed from overlap and grouping functions(Elsevier, 2019) Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Fernández Fernández, Francisco Javier; Sesma Sara, Mikel; Pintor Borobia, Jesús María; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Ingeniaritza; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; IngenieríaOverlap and grouping functions are special kinds of non necessarily associative aggregation operators proposed for many applications, mainly when the associativity property is not strongly required. The classes of overlap and grouping functions are richer than the classes of t-norms and t-conorms, respectively, concerning some properties like idempotency, homogeneity, and, mainly, the self-closedness feature with respect to the convex sum and the aggregation by generalized composition of overlap/grouping functions. In previous works, we introduced some classes of fuzzy implications derived by overlap and/or grouping functions, namely, the residual implications R-0-implications, the strong implications (G, N)-implications and the Quantum Logic implications QL-implications, for overlap functions O, grouping functions G and fuzzy negations N. Such implications do not necessarily satisfy certain properties, but only weaker versions of these properties, e.g., the exchange principle. However, in general, such properties are not demanded for many applications. In this paper, we analyze the so-called law of O-Conditionality, O(x, 1(x, y)) <= y, for any fuzzy implication I and overlap function O, and, in particular, for Ro-implications, (G, N)-implications, QL-implications and D-implications derived from tuples (O, G, N), the latter also introduced in this paper. We also study the conditional antecedent boundary condition for such fuzzy implications, since we prove that this property, associated to the left ordering property, is important for the analysis of the O-Conditionality. We show that the use of overlap functions to implement de generalized Modus Ponens, as the scheme enabled by the law of O-Conditionality, provides more generality than the laws of T-conditionality and U-conditionality, for t-norms T and uninorms U, respectively.