Bustince Sola, Humberto

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Bustince Sola

First Name

Humberto

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 22
  • PublicationOpen Access
    Some properties of implications via aggregation functions and overlap functions
    (Taylor & Francis, 2014) Zapata, Hugo; Bustince Sola, Humberto; Miguel Turullols, Laura de; Guerra Errea, Carlos; Automática y Computación; Automatika eta Konputazioa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, using the identification between implication operators and aggregation functions, we study the implication operators that are recovered from overlap functions. In particular, we focus in which properties of implication operators are preserved. We also study how negations can be defined in terms of overlap functions.
  • PublicationOpen Access
    Weak and directional monotonicity of functions on Riesz spaces to fuse uncertain data
    (Elsevier B.V., 2019) Sesma Sara, Mikel; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the theory of aggregation, there is a trend towards the relaxation of the axiom of monotonicity and also towards the extension of the definition to other domains besides real numbers. In this work, we join both approaches by defining the concept of directional monotonicity for functions that take values in Riesz spaces. Additionally, we adapt this notion in order to work in certain convex sublattices of a Riesz space, which makes it possible to define the concept of directional monotonicity for functions whose purpose is to fuse uncertain data coming from type-2 fuzzy sets, fuzzy multisets, n-dimensional fuzzy sets, Atanassov intuitionistic fuzzy sets and interval-valued fuzzy sets, among others. Focusing on the latter, we characterize directional monotonicity of interval-valued representable functions in terms of standard directional monotonicity.
  • PublicationEmbargo
    Extremal values-based aggregation functions
    (Elsevier, 2024-10-01) Halaš, Radomír; Mesiar, Radko; Kolesárová, Anna; Saadati, Reza; Herrera, Francisco; Rodríguez Martínez, Iosu; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    We introduce and study aggregation functions based on extremal values, namely extended (𝑙, 𝑢)- aggregation functions whose outputs only depend on a fixed number 𝑙 of extremal lower input values and a fixed number 𝑢 of extremal upper input values, independently of the arity of the input 𝑛-tuples (𝑛 ≥ 𝑙 + 𝑢). We discuss several general properties of (𝑙, 𝑢)-aggregation functions and we study special (𝑙, 𝑢)-aggregation functions with neutral element, including t-conorms, t-norms and uninorms. We also study (𝑙, 𝑢)-aggregation functions defined by means of integrals with respect to discrete fuzzy measures, as well as (𝑙, 𝑢)-ordered weighted quasi-arithmetic means based on appropriate weighting vectors. We also stress some generalizations based on recently introduced new types of monotonicity. Some possible applications are sketched, too.
  • PublicationOpen Access
    d-Choquet integrals: Choquet integrals based on dissimilarities
    (Elsevier, 2020) Bustince Sola, Humberto; Mesiar, Radko; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Paternain Dallo, Daniel; Altalhi, A. H.; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Takáč, Zdenko; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    The paper introduces a new class of functions from [0,1]n to [0,n] called d-Choquet integrals. These functions are a generalization of the 'standard' Choquet integral obtained by replacing the difference in the definition of the usual Choquet integral by a dissimilarity function. In particular, the class of all d-Choquet integrals encompasses the class of all 'standard' Choquet integrals but the use of dissimilarities provides higher flexibility and generality. We show that some d-Choquet integrals are aggregation/pre-aggregation/averaging/functions and some of them are not. The conditions under which this happens are stated and other properties of the d-Choquet integrals are studied.
  • PublicationOpen Access
    Consensus image method for unknown noise removal
    (Elsevier, 2014) González Jaime, Luis; Kerre, Etienne E.; Nachtegael, Mike; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa
    Noise removal has been, and it is nowadays, an important task in computer vision. Usually, it is a previous task preceding other tasks, as segmentation or reconstruction. However, for most existing denoising algorithms the noise model has to be known in advance. In this paper, we introduce a new approach based on consensus to deal with unknown noise models. To do this, different filtered images are obtained, then combined using multifuzzy sets and averaging aggregation functions. The final decision is made by using a penalty function to deliver the compromised image. Results show that this approach is consistent and provides a good compromise between filters.
  • PublicationOpen Access
    Mixture functions and their monotonicity
    (Elsevier, 2019) Špirková, Jana; Beliakov, Gleb; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    We consider mixture functions, which are a type of weighted averages for which the corresponding weights are calculated by means of appropriate continuous functions of their inputs. In general, these mixture function need not be monotone increasing. For this reason we study su cient conditions to ensure standard, weak and directional monotonicity for speci c types of weighting functions. We also analyze directional monotonicity when di erentiability is assumed.
  • PublicationOpen Access
    Affine construction methodology of aggregation functions
    (Elsevier, 2020) Roldán López de Hierro, Antonio Francisco; Roldán, Concepción; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Rodríguez Martínez, Iosu; Fardoun, Habib; Lafuente López, Julio; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Aggregation functions have attracted much attention in recent times because of its potential use in many areas such us data fusion and decision making. In practice, most of the aggregation functions that scientists use in their studies are constructed from very simple (usually affine or polynomial) functions. However, these are distinct in nature. In this paper, we develop a systematic study of these two classes of functions from a common point of view. To do this, we introduce the class of affine aggregation functions, which cover both the aforementioned families and most of examples of aggregation functions that are used in practice, including, by its great applicability, the symmetric case. Our study allows us to characterize when a function constructed from affine or polynomial functions is, in fact, a new aggregation function. We also study when sums or products of this kind of functions are again an aggregation function.
  • PublicationEmbargo
    Non-symmetric over-time pooling using pseudo-grouping functions for convolutional neural networks
    (Elsevier, 2024-07-01) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Bedregal, Benjamin; Miguel Turullols, Laura de; Takáč, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Convolutional Neural Networks (CNNs) are a family of networks that have become state-of-the-art in several fields of artificial intelligence due to their ability to extract spatial features. In the context of natural language processing, they can be used to build text classification models based on textual features between words. These networks fuse local features to generate global features in their over-time pooling layers. These layers have been traditionally built using the maximum function or other symmetric functions such as the arithmetic mean. It is important to note that the order of input local features is significant (i.e. the symmetry is not an inherent characteristic of the model). While this characteristic is appropriate for image-oriented CNNs, where symmetry might make the network robust to image rigid transformations, it seems counter-productive for text processing, where the order of the words is certainly important. Our proposal is, hence, to use non-symmetric pooling operators to replace the maximum or average functions. Specifically, we propose to perform over-time pooling using pseudo-grouping functions, a family of non-symmetric aggregation operators that generalize the maximum function. We present a construction method for pseudo-grouping functions and apply different examples of this family to over-time pooling layers in text-oriented CNNs. Our proposal is tested on seven different models and six different datasets in the context of engineering applications, e.g. text classification. The results show an overall improvement of the models when using non-symmetric pseudo-grouping functions over the traditional pooling function.
  • PublicationOpen Access
    Some preference involved aggregation models for basic uncertain information using uncertainty transformation
    (IOS Press, 2020) Yang, RouJian; Jin, LeSheng; Paternain Dallo, Daniel; Yager, Ronald R.; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In decision making, very often the data collected are with different extents of uncertainty. The recently introduced concept, Basic Uncertain Information (BUI), serves as one ideal information representation to well model involved uncertainties with different extents. This study discusses some methods of BUI aggregation by proposing some uncertainty transformations for them. Based on some previously obtained results, we at first define Iowa operator with poset valued input vector and inducing vector. The work then defines the concept of uncertain system, on which we can further introduce the multi-layer uncertainty transformation for BUI. Subsequently, we formally introduce MUT-Iowa aggregation procedure, which has good potential to more and wider application areas. A numerical example is also offered along with some simple usage of it in decision making.
  • PublicationOpen Access
    A generalization of the Choquet integral defined in terms of the Mobius transform
    (IEEE, 2020) Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Horanská, Lubomíra; Mesiar, Radko; Stupñanová, Andrea; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In this article, we propose a generalization of the Choquet integral, starting fromits definition in terms of the Mobius transform. We modify the product on R considered in the Lovasz extension form of the Choquet integral into a function F, and we discuss the properties of this new functional. For a fixed n, a complete description of all F yielding an n-ary aggregation function with a fixed diagonal section, independent of the considered fuzzy measure, is given, and several particular examples are presented. Finally, all functions F yielding an aggregation function, independent of the number n of inputs and of the considered fuzzy measure, are characterized, and related aggregation functions are shown to be just the Choquet integrals over the distorted inputs.