Consensus image method for unknown noise removal

Date

2014

Authors

González Jaime, Luis
Kerre, Etienne E.
Nachtegael, Mike

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

  • European Commission/FP7/238819/
Impacto
Google Scholar
No disponible en Scopus

Abstract

Noise removal has been, and it is nowadays, an important task in computer vision. Usually, it is a previous task preceding other tasks, as segmentation or reconstruction. However, for most existing denoising algorithms the noise model has to be known in advance. In this paper, we introduce a new approach based on consensus to deal with unknown noise models. To do this, different filtered images are obtained, then combined using multifuzzy sets and averaging aggregation functions. The final decision is made by using a penalty function to deliver the compromised image. Results show that this approach is consistent and provides a good compromise between filters.

Description

Keywords

Consensus, Image noise removal, Unknown noise, Penalty function, Aggregation function, OWA operator

Department

Automática y Computación / Automatika eta Konputazioa

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2013 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.