San Martín Biurrun, Idoia

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

San Martín Biurrun

First Name

Idoia

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 27
  • PublicationOpen Access
    Initiative to increment the number of women in STEM degrees: women, science and technology chair of the Public University of Navarre
    (IEEE, 2020) Aranguren Garacochea, Patricia; San Martín Biurrun, Idoia; Catalán Ros, Leyre; Martínez Ramírez, Alicia; Jurío Munárriz, Aránzazu; Díaz Lucas, Silvia; Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Barrenechea Tartas, Edurne; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The Public University of Navarre joined with Navarre Government has created the Women, Science and Technology Chair. This chair arises due to the plummeting tendency of the percentage of women in STEM degrees with the aim of reversing this trend. The programme of activities is defined throughout this contribution by six activities: a Theatre Play, a Poster Award on Final Degree/Masters Project, The 1st Week of Women, Science and Technology, the Promotion of Technical Degrees in schools and high-schools, a Workshop about Gender Stereotypes and the Fostering of Women among Science and Environment. Each activity gained great success and the preset goals were highly accomplished, especially, the 1st Week of Women, Science and Technology activity. The latter achieved a great success both in participation and in repercussion, contributing to visualize the role of women in science and technology.
  • PublicationOpen Access
    Characterization and capacity dispersion of lithium-ion second-life batteries from electric vehicles
    (IEEE, 2019) Braco Sola, Elisa; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    Nowadays, electric vehicle batteries reutilization is considered such as a feasible alternative to recycling, as it allows to benefit from their remaining energy and to enlarge their lifetime. Stationary applications as self-consumption or isolated systems support are examples of possible second life uses for these batteries. However, the modules that compose these batteries have very heterogeneous properties, and therefore condition their performance. This paper aims to characterize and analyze the existing capacity dispersion of Nissan Leaf modules that have reached the end of their lifetime on their original application and of new modules of this Electric Vehicle, in order to establish a comparison between them.
  • PublicationOpen Access
    Health indicator selection for state of health estimation of second-life lithium-ion batteries under extended ageing
    (Elsevier, 2022) Braco Sola, Elisa; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Stroe, Daniel-Ioan; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Nowadays, the economic viability of second-life (SL) Li-ion batteries from electric vehicles is still uncertain. Degradation assessment optimization is key to reduce costs in SL market not only at the repurposing stage, but also during SL lifetime. As an indicator of the ageing condition of the batteries, state of health (SOH) is currently a major research topic, and its estimation has emerged as an alternative to traditional characterization tests. In an initial stage, all SOH estimation methods require the extraction of health indicators (HIs), which influence algorithm complexity and on-board implementation. Nevertheless, a literature gap has been identified in the assessment of HIs for reused Li-ion batteries. This contribution targets this issue by analysing 58 HIs obtained from incremental capacity analysis, partial charging, constant current and constant voltage stage, and internal resistance. Six Nissan Leaf SL modules were aged under extended cycling testing, covering a SOH range from 71.2 % to 24.4 %. Results show that the best HI at the repurposing stage was obtained through incremental capacity analysis, with 0.2 % of RMSE. During all SL use, partial charge is found to be the best method, with less than 2.0 % of RMSE. SOH is also estimated using the best HI and different algorithms. Linear regression is found to overcome more complex options with similar estimation accuracy and significantly lower computation times. Hence, the importance of analysing and selecting a good SL HI is highlighted, given that this made it possible to obtain accurate SOH estimation results with a simple algorithm.
  • PublicationOpen Access
    Experimental assessment of first- and second-life electric vehicle batteries: performance, capacity dispersion, and aging
    (IEEE, 2021) Braco Sola, Elisa; San Martín Biurrun, Idoia; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    Nowadays, the reuse of electric vehicle batteries is considered to be a feasible alternative to recycling, as it allows them to benefit from their remaining energy capacity and to enlarge their lifetime. Stationary applications, such as self-consumption or off-grid systems support, are examples of second-life (SL) uses for retired batteries. However, reused modules that compose these batteries have heterogeneous properties, which limit their performance. This article aims to assess the influence of degradation in modules from electric vehicles, covering three main aspects: performance, capacity dispersion, and extended SL behavior. First, a complete characterization of new and reused modules is carried out, considering three temperatures and three discharge rates. In the second stage, intra- and intermodule capacity dispersions are evaluated with new and reused samples. Finally, the behavior during SL is also analyzed, through an accelerated cycling test so that the evolution of capacity and dispersion are assessed. Experimental results show that the performance of reused modules is especially undermined at low temperatures and high current rates, as well as in advanced stages of aging. The intramodule dispersion is found to be similar in reused and new samples, while the intermodule differences are nearly four times greater in SL.
  • PublicationOpen Access
    Modelling of PEM fuel cell performance: steady-state and dynamic experimental validation
    (MDPI, 2014) San Martín Biurrun, Idoia; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    This paper reports on the modelling of a commercial 1.2 kW proton exchange membrane fuel cell (PEMFC), based on interrelated electrical and thermal models. The electrical model proposed is based on the integration of the thermodynamic and electrochemical phenomena taking place in the FC whilst the thermal model is established from the FC thermal energy balance. The combination of both models makes it possible to predict the FC voltage, based on the current demanded and the ambient temperature. Furthermore, an experimental characterization is conducted and the parameters for the models associated with the FC electrical and thermal performance are obtained. The models are implemented in Matlab Simulink and validated in a number of operating environments, for steady-state and dynamic modes alike. In turn, the FC models are validated in an actual microgrid operating environment, through the series connection of 4 PEMFC. The simulations of the models precisely and accurately reproduce the FC electrical and thermal performance.
  • PublicationOpen Access
    Integration of second-life batteries in residential microgrids and fast charging stations
    (IEEE, 2022) San Martín Biurrun, Idoia; Braco Sola, Elisa; Martín Castilla, Álvaro; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua
    The potential of batteries from electric vehicles to be given a second life in stationary applications could be starting to become a reality in few years. However, the technical and economic feasibility of such second-life batteries (SLBs) is still uncertain. In this context, this paper analyses the real operation of a SLB in three scenarios: two of residential microgrids with photovoltaic generation under different strategies, and a fast charging station for electric mobility. To this end, three energy management strategies are developed, the first of which seeks to maximise the self-consumption of a typical household with photovoltaic generation; the second, in addition to maximising self-consumption, presents a night-time charge and peak shaving of the contract power from the grid; and the last refers to an urban bus charging station in which the aim is to reduce the contract power from the grid. Experimental validation of SLB during more than three weeks of operation in each of the scenarios have proved the technical viability of these batteries in the applications analysed.
  • PublicationOpen Access
    Supercapacitors: electrical characteristics, modelling, applications and future trends
    (IEEE, 2019) Berrueta Irigoyen, Alberto; Ursúa Rubio, Alfredo; San Martín Biurrun, Idoia; Eftekhari, Ali; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI020 RENEWABLE-STORAGE
    Energy storage systems are playing an increasingly important role in a variety of applications, such as electric vehicles or grid-connected systems. In this context, supercapacitors (SCs) are gaining ground due to their high power density, good performance and long maintenance-free lifetime. For this reason, SCs are a hot research topic, and several papers are being published on material engineering, performance characterization, modelling and post-mortem analysis. A compilation of the most important millstones on this topic is essential to keep researchers on related fields updated about new potentials of this technology. This review paper covers recent research aspects and applications of SCs, highlighting the relationship between material properties and electrical characteristics. It begins with an explanation of the energy storage mechanisms and materials used by SCs. Based on these materials, the SCs are classified, their key features are summarised, and their electrochemical characteristics are related to electrical performance. Given the high interest in system modelling and the large number of papers published on this topic, modelling techniques are classified, explained and compared, addressing their strengths and weaknesses, and the experimental techniques used to measure the modelled properties are described. Finally, the market sectors in which SCs are successfully used, as well as their growth expectations are analysed. The analysis presented herein gives account of the expansion that SC market is currently undergoing and identifies the most promising research trends on this field.
  • PublicationOpen Access
    Modeling of small wind turbines based on PMSG with diode bridge for sensorless maximum power tracking
    (Elsevier, 2013) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; San Martín Biurrun, Idoia; López Taberna, Jesús; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The Permanent Magnet Synchronous Generator (PMSG) with diode bridge is frequently used in small Wind Energy Conversion Systems (WECS). This configuration is robust and cheap, and therefore suitable for small WECS. In order to achieve Maximum Power Point Tracking (MPPT) with no mechanical sensors, it is possible to impose the relationship between the DC voltage and the DC current on the optimum operating points. However, this relationship is difficult to calculate theoretically since the whole system is involved. In fact, as there is no model of the whole system in the literature, the optimum curve IL*(Vdc) is obtained with experimental tests or simulations. This paper develops an accurate model of the whole WECS, thereby making it possible to relate the electrical variables to the mechanical ones. With this model, it is possible to calculate the optimum curve IL*(Vdc) from commonly-known system parameters and to control the system from the DC side. Experimental results validate the theoretical analysis and show that maximum power is extracted for actual wind speed profiles.
  • PublicationOpen Access
    Hydrogen-based energy storage for a distributed generation system
    (Spanish Hydrogen Association, 2016) San Martín Biurrun, Idoia; Berrueta Irigoyen, Alberto; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    One of the most typical distributed generation systems are electrical microgrid, which consist on small electrical grids, generally connected to the main grid, with a decentralized management structure. Electrical microgrids allow higher renewable energy integration in the grid, achieving a cost decrease and improving the grid quality [1]. These mi- crogrids incorporate renewable generation systems and energy consumers. Moreover, they have storage systems to balance generation and consumption as well as the exchanged power with the main grid. Traditionally, lead-acid batter- ies have been used in microgrids. However, these batteries have some drawbacks, being the most important its poor performance in partial state of charge, which is critical for a microgrid. A suitable option for the storage system is hy- drogen technology. These systems have high energy density, which makes the storage system able to assume seasonal variability of renewable resources. This paper proposes a sizing methodology for storage systems based on hydrogen for grid-tied electrical microgrids. This methodology optimizes the relationship between the storage system size and the consumption of grid power.
  • PublicationOpen Access
    Lithium-ion second-life batteries: aging modeling and experimental validation
    (IEEE, 2024-08-30) Pérez Ibarrola, Ane; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2023-11380; Gobierno de Navarra / Nafarroako Gobernua
    Re-utilizing lithium-ion batteries from electric vehicles reduces their environmental impact. To ensure their optimal sizing and safe use, identifying the current state of the battery and predicting its remaining useful life is essential. This work analyzes the degradation mechanisms involved and proposes an aging model that utilizes a semi-empirical approach to accurately reproduce the battery's state of health within a range of 75-45 %. Calendar aging includes dependencies on temperature and state of charge while cycling aging is modeled based on depth of discharge, medium SOC, temperature, and Crate. The model is validated against experimental data from 14 LMO/LNO cells previously used in actual Nissan Leaf vehicles and an RMSE bellow 2.5 % is achieved in every case.