San Martín Biurrun, Idoia

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

San Martín Biurrun

First Name

Idoia

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 28
  • PublicationOpen Access
    Health indicator selection for state of health estimation of second-life lithium-ion batteries under extended ageing
    (Elsevier, 2022) Braco Sola, Elisa; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Stroe, Daniel-Ioan; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Nowadays, the economic viability of second-life (SL) Li-ion batteries from electric vehicles is still uncertain. Degradation assessment optimization is key to reduce costs in SL market not only at the repurposing stage, but also during SL lifetime. As an indicator of the ageing condition of the batteries, state of health (SOH) is currently a major research topic, and its estimation has emerged as an alternative to traditional characterization tests. In an initial stage, all SOH estimation methods require the extraction of health indicators (HIs), which influence algorithm complexity and on-board implementation. Nevertheless, a literature gap has been identified in the assessment of HIs for reused Li-ion batteries. This contribution targets this issue by analysing 58 HIs obtained from incremental capacity analysis, partial charging, constant current and constant voltage stage, and internal resistance. Six Nissan Leaf SL modules were aged under extended cycling testing, covering a SOH range from 71.2 % to 24.4 %. Results show that the best HI at the repurposing stage was obtained through incremental capacity analysis, with 0.2 % of RMSE. During all SL use, partial charge is found to be the best method, with less than 2.0 % of RMSE. SOH is also estimated using the best HI and different algorithms. Linear regression is found to overcome more complex options with similar estimation accuracy and significantly lower computation times. Hence, the importance of analysing and selecting a good SL HI is highlighted, given that this made it possible to obtain accurate SOH estimation results with a simple algorithm.
  • PublicationOpen Access
    Initiative to increment the number of women in STEM degrees: women, science and technology chair of the Public University of Navarre
    (IEEE, 2020) Aranguren Garacochea, Patricia; San Martín Biurrun, Idoia; Catalán Ros, Leyre; Martínez Ramírez, Alicia; Jurío Munárriz, Aránzazu; Díaz Lucas, Silvia; Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Barrenechea Tartas, Edurne; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The Public University of Navarre joined with Navarre Government has created the Women, Science and Technology Chair. This chair arises due to the plummeting tendency of the percentage of women in STEM degrees with the aim of reversing this trend. The programme of activities is defined throughout this contribution by six activities: a Theatre Play, a Poster Award on Final Degree/Masters Project, The 1st Week of Women, Science and Technology, the Promotion of Technical Degrees in schools and high-schools, a Workshop about Gender Stereotypes and the Fostering of Women among Science and Environment. Each activity gained great success and the preset goals were highly accomplished, especially, the 1st Week of Women, Science and Technology activity. The latter achieved a great success both in participation and in repercussion, contributing to visualize the role of women in science and technology.
  • PublicationOpen Access
    Integrated lithium-ion battery model and experimental validation of a second-life prototype
    (IEEE, 2023-08-31) Pérez Ibarrola, Ane; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua
    A battery model predicts the battery performance, which can be a useful tool for optimizing battery design and preventing unsafe operation. This becomes especially significant in second-life batteries where the cells have already endured degradation and predicting the lifetime becomes challenging. The assessment of physical phenomena is often performed individually, but the overall battery behavior depends on their interaction. For this purpose, an integrated battery model is developed. Equivalent electric circuits are interconnected to represent the electrochemical reactions, thermodynamic phenomena, and heat transfer mechanisms of the battery. To consider cell degradation, calendar and cycling aging were represented using a semi-empirical model. A battery management system is included to oversee and remain within the safe limits of battery voltage, temperature, and current. Additionally, a passive cell balancing distributes charge evenly. The integrated model is applied to a second-life battery prototype with a nominal capacity and power of 45 Ah and 4 kW, respectively. Its performance is validated with constant current and power cycles, as well as in a microgrid with photovoltaic generation under a self-consumption profile. The model accurately reproduces experimental results of battery power, voltage, temperature, and state of charge.
  • PublicationOpen Access
    Analysis and modelling of calendar ageing in second-life lithium-ion batteries from electric vehicles
    (IEEE, 2022) Braco Sola, Elisa; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de NAVARRA / Nafarroako Gobernua
    The reuse of Li-ion batteries from electric vehicles is a promising alternative to recycling nowadays. However, the technical and economic viability of these second-life (SL) batteries is not yet clear. Degradation assessment plays a key role not only to analyse the impact of ageing factors in reused batteries, but also to quantify their durability. In this context, this contribution aims to analyse calendar ageing behaviour in SL cells. 16 reused Nissan Leaf modules are aged during 750 days under three temperatures and four State of Charge (SOC), covering a State of Health range from 72.2 % to 13 %. The impact of temperature and SOC as stress factors is firstly analysed, concluding that their increase accelerates ageing. Temperature rise is found to have a major impact, accelerating up to 27 times capacity fade and almost 6 times resistance increase when compared to light ageing conditions, while increasing SOC nearly doubles ageing rates. The worst ageing case is found to be the combination of 60 ◦C and 66 % of SOC. Regarding degradation trends, they are proven to be constant during all SL lifetime. This work also proposes and validates a calendar ageing model for SL cells. Accuracy of validation results show a fitting Rsq of 0.9941 in capacity fade and 0.9557 in resistance increase, thereby tracking the heterogeneous degradation of the SL cells under calendar ageing.
  • PublicationOpen Access
    Static and dynamic characterization of a supercapacitor
    (2014) Berrueta Irigoyen, Alberto; San Martín Biurrun, Idoia; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Supercapacitors (SCs) have recently received a major boost as a result of the development of multiple applications, such as the electric vehicle and electric microgrids. Storage systems consisting of SCs combined with batteries or fuel cells have been proposed in multiple applications. Since SCs store energy as an electric field, they are able to efficiently manage high power and high frequency charge‐discharge cycles. This ability to handle high power in a wide frequency range grants them a wide advantage against other energy‐storage technologies. A static and dynamic characterization of the Maxwell SC BMOD0083 has been accomplished in this study.
  • PublicationOpen Access
    Hydrogen-based energy storage for a distributed generation system
    (Spanish Hydrogen Association, 2016) San Martín Biurrun, Idoia; Berrueta Irigoyen, Alberto; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    One of the most typical distributed generation systems are electrical microgrid, which consist on small electrical grids, generally connected to the main grid, with a decentralized management structure. Electrical microgrids allow higher renewable energy integration in the grid, achieving a cost decrease and improving the grid quality [1]. These mi- crogrids incorporate renewable generation systems and energy consumers. Moreover, they have storage systems to balance generation and consumption as well as the exchanged power with the main grid. Traditionally, lead-acid batter- ies have been used in microgrids. However, these batteries have some drawbacks, being the most important its poor performance in partial state of charge, which is critical for a microgrid. A suitable option for the storage system is hy- drogen technology. These systems have high energy density, which makes the storage system able to assume seasonal variability of renewable resources. This paper proposes a sizing methodology for storage systems based on hydrogen for grid-tied electrical microgrids. This methodology optimizes the relationship between the storage system size and the consumption of grid power.
  • PublicationOpen Access
    Characterization and capacity dispersion of lithium-ion second-life batteries from electric vehicles
    (IEEE, 2019) Braco Sola, Elisa; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    Nowadays, electric vehicle batteries reutilization is considered such as a feasible alternative to recycling, as it allows to benefit from their remaining energy and to enlarge their lifetime. Stationary applications as self-consumption or isolated systems support are examples of possible second life uses for these batteries. However, the modules that compose these batteries have very heterogeneous properties, and therefore condition their performance. This paper aims to characterize and analyze the existing capacity dispersion of Nissan Leaf modules that have reached the end of their lifetime on their original application and of new modules of this Electric Vehicle, in order to establish a comparison between them.
  • PublicationOpen Access
    Lithium-ion second-life batteries: aging modeling and experimental validation
    (IEEE, 2024-08-30) Pérez Ibarrola, Ane; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2023-11380; Gobierno de Navarra / Nafarroako Gobernua
    Re-utilizing lithium-ion batteries from electric vehicles reduces their environmental impact. To ensure their optimal sizing and safe use, identifying the current state of the battery and predicting its remaining useful life is essential. This work analyzes the degradation mechanisms involved and proposes an aging model that utilizes a semi-empirical approach to accurately reproduce the battery's state of health within a range of 75-45 %. Calendar aging includes dependencies on temperature and state of charge while cycling aging is modeled based on depth of discharge, medium SOC, temperature, and Crate. The model is validated against experimental data from 14 LMO/LNO cells previously used in actual Nissan Leaf vehicles and an RMSE bellow 2.5 % is achieved in every case.
  • PublicationOpen Access
    Incremental capacity analysis of lithium-ion second-life batteries from electric vehicles under cycling ageing
    (IEEE, 2021) Braco Sola, Elisa; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    Nowadays, the reuse of batteries from electric vehicles is considered a promising solution to benefit from their remaining energy and extend their lifespan. Yet, the economic viability of these second-life batteries is still uncertain, and the optimization of testing at their reconfiguration stage and during their lifetime is the key to ensure their success. This paper aims to assess Incremental Capacity Analysis technique in Nissan Leaf modules during their second-life use, in order to evaluate both its potential as an State of Health estimator and as a tool to identify underlying degradation mechanisms. Despite the different internal state and ageing rates observed between the tested modules, ICA is found to be consistent at similar SOH levels. The influence of ageing, current and temperature on ICA is evaluated through an accelerated cycling test. Results show that ICA is a promising alternative to estimate SOH during second life even at currents up to C/2 and testing temperatures of 45 °C. However, testing by accelerated currents and temperatures is not recommended for the identification of degradation mechanisms.
  • PublicationOpen Access
    Electro-thermal modelling of a supercapacitor and experimental validation
    (Elsevier, 2014) Berrueta Irigoyen, Alberto; San Martín Biurrun, Idoia; Hernández, Andoni; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    This paper reports on the electro-thermal modelling of a Maxwell supercapacitor (SC), model BMOD0083 with a rated capacitance of 83 F and rated voltage of 48 V. One electrical equivalent circuit was used to model the electrical behaviour whilst another served to simulate the thermal behaviour. The models were designed to predict the SC operating voltage and temperature, by taking the electric current and ambient temperature as input variables. A five-stage iterative method, applied to three experiments, served to obtain the parameter values for each model. The models were implemented in MATLABSimulink , where they interacted to reciprocally provide information. These models were then validated through a number of tests, subjecting the SC to different current and frequency profiles. These tests included the validation of a bank of supercapacitors integrated into an electric microgrid, in a real operating environment. Satisfactory results were obtained from the electric and thermal models, with RMSE values of less than 0.65 V in all validations.