Person: Sesma Sara, Mikel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Sesma Sara
First Name
Mikel
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
27 results
Search Results
Now showing 1 - 10 of 27
Publication Open Access Operador de comparación de elementos multivaluados basado en funciones de equivalencia restringida(Universidad de Málaga, 2021) Castillo López, Aitor; López Molina, Carlos; Fernández Fernández, Francisco Javier; Sesma Sara, Mikel; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn este trabajo proponemos un nuevo enfoque del algoritmo de clustering gravitacional basado en lo que Einstein considero su 'mayor error': la constante cosmológica. De manera similar al algoritmo de clustering gravitacional, nuestro enfoque está inspirado en principios y leyes del cosmos, y al igual que ocurre con la teoría de la relatividad de Einstein y la teoría de la gravedad de Newton, nuestro enfoque puede considerarse una generalización del agrupamiento gravitacional, donde, el algoritmo de clustering gravitacional se recupera como caso límite. Además, se desarrollan e implementan algunas mejoras que tienen como objetivo optimizar la cantidad de iteraciones finales, y de esta forma, se reduce el tiempo de ejecución tanto para el algoritmo original como para nuestra versión.Publication Embargo Directional monotonicity of multidimensional fusion functions with respect to admissible orders(Elsevier, 2023) Sesma Sara, Mikel; Bustince Sola, Humberto; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA25-2022The notion of directional monotonicity emerged as a relaxation of the monotonicity condition of aggregation functions. As the extension of aggregation functions to fuse more complex information than numeric data, directional monotonicity was extended to the framework of multidimensional data, with respect to the product order, which is a partial order. In this work, we present the notion of admissible order for multidimensional data and we define the concept of directional monotonicity for multidimensional fusion functions with respect to an admissible order. Moreover, we study the main properties of directionally monotone functions in this new context. We conclude that, while some of the properties are still valid (e.g. the set of directions of increasingness is still closed under convex combinations), some of the main ones no longer hold (e.g. there does not exist a finite set of directions that characterize standard monotonicity in terms of directional monotonicity).Publication Open Access Measures of embedding for interval-valued fuzzy sets(Elsevier, 2023) Bouchet, Agustina; Sesma Sara, Mikel; Ochoa Lezaun, Gustavo; Bustince Sola, Humberto; Montes, Susana; Díaz, Irene; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaInterval-valued fuzzy sets are a generalization of classical fuzzy sets where the membership values are intervals. The epistemic interpretation of interval-valued fuzzy sets assumes that there is one real-valued membership degree of an element within the membership interval of possible membership degrees. Considering this epistemic interpretation, we propose a new measure, called IV-embedding, to compare the precision of two interval-valued fuzzy sets. An axiomatic definition for this concept as well as a construction method are provided. The construction method is based on aggregation operators and the concept of interval embedding, which is also introduced and deeply studied.Publication Open Access Some properties and construction methods for ordered directionally monotone functions(IEEE, 2017-08-24) Sesma Sara, Mikel; Marco Detchart, Cedric; Bustince Sola, Humberto; Barrenechea Tartas, Edurne; Lafuente López, Julio; Kolesárová, Anna; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCIn this work we propose a new generalization of the notion of monotonicity, the so-called ordered directionally monotonicity. With this new notion, the direction of increasingness or decreasingness at a given point depends on that specific point, so that it is not the same for every value on the domain of the considered function.Publication Open Access Strengthened ordered directionally monotone functions. Links between the different notions of monotonicity(Elsevier, 2019) Sesma Sara, Mikel; Lafuente López, Julio; Roldán López de Hierro, Antonio Francisco; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasIn this work, we propose a new notion of monotonicity: strengthened ordered directional monotonicity. This generalization of monotonicity is based on directional monotonicity and ordered directional monotonicity, two recent weaker forms of monotonicity. We discuss the relation between those different notions of monotonicity from a theoretical point of view. Additionally, along with the introduction of two families of functions and a study of their connection to the considered monotonicity notions, we define an operation between functions that generalizes the Choquet integral and the Lukasiewicz implication.Publication Open Access Trend analysis in L-fuzzy contexts with absent values(University of Sistan and Baluchestan (Irán), 2020) Alcalde, Cristina; Burusco Juandeaburre, Ana; Bustince Sola, Humberto; Sesma Sara, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaSometimes we have to work with L-fuzzy context sequences where one or more values are missing. These sequences can represent, among other things, the evolution in time of an L-fuzzy context. The studies of tendencies that we have done so far used tools that are not valid when the L-fuzzy context has unknown values. In this work we address such situations and we propose new methods to tackle the problem. Besides, we use the study of tendencies to analyse relations between the objects and the attributes of L-fuzzy contexts and to replace the absent values taking into account the behaviour of the sequence.Publication Open Access Strengthened ordered directional and other generalizations of monotonicity for aggregation functions(Springer, 2018) Sesma Sara, Mikel; Miguel Turullols, Laura de; Lafuente López, Julio; Barrenechea Tartas, Edurne; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaA tendency in the theory of aggregation functions is the generalization of the monotonicity condition. In this work, we examine the latest developments in terms of different generalizations. In particular, we discuss strengthened ordered directional monotonicity, its relation to other types of monotonicity, such as directional and ordered directional monotonicity and the main properties of the class of functions that are strengthened ordered directionally monotone. We also study some construction methods for such functions and provide a characterization of usual monotonicity in terms of these notions of monotonicity.Publication Open Access A fuzzy association rule-based classifier for imbalanced classification problems(Elsevier, 2021) Sanz Delgado, José Antonio; Sesma Sara, Mikel; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaImbalanced classification problems are attracting the attention of the research community because they are prevalent in real-world problems and they impose extra difficulties for learning methods. Fuzzy rule-based classification systems have been applied to cope with these problems, mostly together with sampling techniques. In this paper, we define a new fuzzy association rule-based classifier, named FARCI, to tackle directly imbalanced classification problems. Our new proposal belongs to the algorithm modification category, since it is constructed on the basis of the state-of-the-art fuzzy classifier FARC–HD. Specifically, we modify its three learning stages, aiming at boosting the number of fuzzy rules of the minority class as well as simplifying them and, for the sake of handling unequal fuzzy rule lengths, we also change the matching degree computation, which is a key step of the inference process and it is also involved in the learning process. In the experimental study, we analyze the effectiveness of each one of the new components in terms of performance, F-score, and rule base size. Moreover, we also show the superiority of the new method when compared versus FARC–HD alongside sampling techniques, another algorithm modification approach, two cost-sensitive methods and an ensemble.Publication Open Access Curve-based monotonicity: a generalization of directional monotonicity(Taylor & Francis, 2019) Roldán López de Hierro, Antonio Francisco; Sesma Sara, Mikel; Špirková, Jana; Lafuente López, Julio; Pradera, Ana; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasIn this work we propose a generalization of the notion of directional monotonicity. Instead of considering increasingness or decreasingness along rays, we allow more general paths defined by curves in the n-dimensional space. These considerations lead us to the notion of α-monotonicity, where α is the corresponding curve. We study several theoretical properties of α-monotonicity and relate it to other notions of monotonicity, such as weak monotonicity and directional monotonicity.Publication Open Access Reemplazo de la función de pooling de redes neuronales convolucionales por combinaciones lineales de funciones crecientes(Universidad de Málaga, 2021) Rodríguez Martínez, Iosu; Lafuente López, Julio; Sesma Sara, Mikel; Herrera, Francisco; Ursúa Medrano, Pablo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaLas redes convolucionales llevan a cabo un proceso automatico de extracción y fusión de características mediante el cual obtienen la información más relevante de una imagen dada. El proceso de submuestreo mediante el cual se fusionan características localmente próximas, conocido como ‘pooling’, se lleva a cabo tradicionalmente con funciones sencillas como el máximo o la media aritmética, ignorando otras opciones muy populares en el campo de la teoría de agregaciones. En este trabajo proponemos reemplazar dichas funciones por otra serie de ordenes estadísticos, así como por la integral de Sugeno y una nueva generalización de la misma. Además, basándonos en trabajos que emplean la combinación convexa del máximo y la media, presentamos una nueva capa que permite combinar varias de las nuevas agregaciones, mejorando sus resultados individuales.
- «
- 1 (current)
- 2
- 3
- »