Person:
Sesma Sara, Mikel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sesma Sara

First Name

Mikel

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 27
  • PublicationOpen Access
    Curve-based monotonicity: a generalization of directional monotonicity
    (Taylor & Francis, 2019) Roldán López de Hierro, Antonio Francisco; Sesma Sara, Mikel; Špirková, Jana; Lafuente López, Julio; Pradera, Ana; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    In this work we propose a generalization of the notion of directional monotonicity. Instead of considering increasingness or decreasingness along rays, we allow more general paths defined by curves in the n-dimensional space. These considerations lead us to the notion of α-monotonicity, where α is the corresponding curve. We study several theoretical properties of α-monotonicity and relate it to other notions of monotonicity, such as weak monotonicity and directional monotonicity.
  • PublicationOpen Access
    Enhancing DreamBooth with LoRA for generating unlimited characters with stable diffusion
    (IEEE, 2024-09-09) Pascual Casas, Rubén; Maiza Coupin, Adrián Mikel; Sesma Sara, Mikel; Paternain Dallo, Daniel; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2023-11377
    This paper addresses the challenge of generating unlimited new and distinct characters that encompass the style and shared visual characteristics of a limited set of human designed characters. This is a relevant problem in the audiovisual industry, as the ability to rapidly produce original characters that adhere to specific characteristics greatly increases the possibilities in the production of movies, series, or video games. Our solution is built upon DreamBooth, a widely extended fine-tuning method for text-to-image models. We propose an adaptation focusing on two main challenges: the impracticality of relying on detailed image prompts for character description and the few-shot learning scenario with a limited set of characters available for training. To solve these issues, we introduce additional character-specific tokens to DreamBooth training and remove its class-specific regularization dataset. For an unlimited generation of characters, we propose the usage of random tokens and random embeddings. This proposal is tested on two specialized datasets and the results shows our method¿s capability to produce diverse characters that adhere to a style and visual characteristics. An ablation study to analyze the contributions of the proposed modifications is also developed.
  • PublicationOpen Access
    New measures for comparing matrices and their application to image processing
    (Elsevier, 2018) Sesma Sara, Mikel; Miguel Turullols, Laura de; Pagola Barrio, Miguel; Burusco Juandeaburre, Ana; Mesiar, Radko; Bustince Sola, Humberto; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y Computación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work we present the class of matrix resemblance functions, i.e., functions that measure the difference between two matrices. We present two construction methods and study the properties that matrix resemblance functions satisfy, which suggest that this class of functions is an appropriate tool for comparing images. Hence, we present a comparison method for grayscale images whose result is a new image, which enables to locate the areas where both images are equally similar or dissimilar. Additionally, we propose some applications in which this comparison method can be used, such as defect detection in industrial manufacturing processes and video motion detection and object tracking.
  • PublicationOpen Access
    Generación ilimitada de personajes mediante Stable Diffusion con DreamBooth y LoRA
    (CAEPIA, 2024) Pascual Casas, Rubén; Maiza Coupin, Adrián Mikel; Sesma Sara, Mikel; Paternain Dallo, Daniel; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2023-11377; Gobierno de Navarra / Nafarroako Gobernua
    Este artículo aborda el reto de generar un número ilimitado de personajes nuevos, y distintos, que engloben el estilo y las características visuales compartidas de un conjunto limitado de personajes diseñados por un humano. Este es un problema de gran relevancia en la industria audiovisual, ya que la capacidad de producir rápidamente personajes originales que se adhieran a unas características específicas aumenta enormemente las posibilidades en la producción de películas, series o videojuegos. Nuestra solución se basa en DreamBooth, un método de ajuste de modelos generativos de texto a imagen ampliamente extendido. Proponemos una adaptación centrada en dos retos principales: lo poco práctico que resulta utilizar prompts detallados de las imágenes para describir los personajes y la complejidad del ajuste de modelos a partir de un conjunto limitado de personajes. Para resolver estos problemas, introducimos en el entrenamiento de DreamBooth tokens adicionales específicos para cada personaje y eliminamos el conjunto de datos de regularización. Para generar personajes de manera ilimitada, proponemos el uso de tokens y embeddings aleatorios. Comprobamos la utilidad de la propuesta utilizando dos conjuntos de datos diferentes. Los resultados obtenidos muestran la capacidad de nuestro método para producir personajes diversos que se adhieren a un estilo y a unas características visuales concretas. Finalmente, desarrollamos un estudio de ablación.
  • PublicationOpen Access
    Operador de comparación de elementos multivaluados basado en funciones de equivalencia restringida
    (Universidad de Málaga, 2021) Castillo López, Aitor; López Molina, Carlos; Fernández Fernández, Francisco Javier; Sesma Sara, Mikel; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    En este trabajo proponemos un nuevo enfoque del algoritmo de clustering gravitacional basado en lo que Einstein considero su 'mayor error': la constante cosmológica. De manera similar al algoritmo de clustering gravitacional, nuestro enfoque está inspirado en principios y leyes del cosmos, y al igual que ocurre con la teoría de la relatividad de Einstein y la teoría de la gravedad de Newton, nuestro enfoque puede considerarse una generalización del agrupamiento gravitacional, donde, el algoritmo de clustering gravitacional se recupera como caso límite. Además, se desarrollan e implementan algunas mejoras que tienen como objetivo optimizar la cantidad de iteraciones finales, y de esta forma, se reduce el tiempo de ejecución tanto para el algoritmo original como para nuestra versión.
  • PublicationOpen Access
    Directions of directional, ordered directional and strengthened ordered directional increasingness of linear and ordered linear fusion operators
    (IEEE, 2019) Sesma Sara, Mikel; Marco Detchart, Cedric; Lafuente López, Julio; Roldán López de Hierro, Antonio Francisco; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work we discuss the forms of monotonicity that have been recently introduced to relax the monotonicity condition in the definition of aggregation functions. We focus on directional, ordered directional and strengthened ordered directional monotonicity, study their main properties and provide some results about their links and relations among them. We also present two families of functions, the so-called linear fusion functions and ordered linear fusion functions and we study the set of directions for which these types of functions are directionally, ordered directionally and strengthened ordered directionally increasing. In particular, OWA operators are an example of ordered linear fusion functions.
  • PublicationOpen Access
    Generalized forms of monotonicity in the data aggregation framework
    (2019) Sesma Sara, Mikel; Bustince Sola, Humberto; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    El proceso de agregación trata el problema de combinar una colección de valores numéricos en un único valor que los represente y las funciones encargadas de esta operación se denominan funciones de agregación. A las funciones de agregación se les exige que cumplan dos condiciones de contorno y, además, han de ser monótonas con respecto a todos sus argumentos. Una de las tendencias en el área de investigación de las funciones de agregación es la relajación de la condición de monotonía. En este respecto, se han introducido varias formas de monotonía relajada. Tal es el caso de la monotonía débil, la monotonía direccional y la monotonía respecto a un cono. Sin embargo, todas estas relajaciones de monotonía están basadas en la idea de crecer, o decrecer, a lo largo de un rayo definido por un vector real. No existe noción de monotonía que permita que la dirección de crecimiento dependa de los valores a fusionar, ni tampoco existe noción de monotonía que considere el crecimiento a lo largo de caminos más generales, como son las curvas. Además, otra de las tendencias en la teoría de la agregación es la extensión a escalas más generales que la de los números reales y no existe relajación de monotonía disponible para este contexto general. En esta tesis, proponemos una colección de nuevas formas de monotonía relajada para las cuales las direcciones de monotonía pueden variar dependiendo del punto del dominio. En concreto, introducimos los conceptos de monotonía direccional ordenada, monotonía direccional ordenada reforzada y monotonía direccional punto a punto. Basándonos en funciones que cumplan las propiedades de monotonía direccional ordenada, proponemos un algoritmo de detección de bordes que justifica la aplicabilidad de estos conceptos. Por otro lado, generalizamos el concepto de monotonía direccional tomando, en lugar de direcciones en Rn, caminos más generales: definimos el concepto de monotonía basado en curvas. Por último, combinando ambas tendencias en la teoría de la agregación, generalizamos el concepto de monotonía direccional a funciones definidas en escalas más generales que la de los números reales.
  • PublicationOpen Access
    Strengthened ordered directional and other generalizations of monotonicity for aggregation functions
    (Springer, 2018) Sesma Sara, Mikel; Miguel Turullols, Laura de; Lafuente López, Julio; Barrenechea Tartas, Edurne; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A tendency in the theory of aggregation functions is the generalization of the monotonicity condition. In this work, we examine the latest developments in terms of different generalizations. In particular, we discuss strengthened ordered directional monotonicity, its relation to other types of monotonicity, such as directional and ordered directional monotonicity and the main properties of the class of functions that are strengthened ordered directionally monotone. We also study some construction methods for such functions and provide a characterization of usual monotonicity in terms of these notions of monotonicity.
  • PublicationEmbargo
    Directional monotonicity of multidimensional fusion functions with respect to admissible orders
    (Elsevier, 2023) Sesma Sara, Mikel; Bustince Sola, Humberto; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA25-2022
    The notion of directional monotonicity emerged as a relaxation of the monotonicity condition of aggregation functions. As the extension of aggregation functions to fuse more complex information than numeric data, directional monotonicity was extended to the framework of multidimensional data, with respect to the product order, which is a partial order. In this work, we present the notion of admissible order for multidimensional data and we define the concept of directional monotonicity for multidimensional fusion functions with respect to an admissible order. Moreover, we study the main properties of directionally monotone functions in this new context. We conclude that, while some of the properties are still valid (e.g. the set of directions of increasingness is still closed under convex combinations), some of the main ones no longer hold (e.g. there does not exist a finite set of directions that characterize standard monotonicity in terms of directional monotonicity).
  • PublicationOpen Access
    Linking mathematical morphology and L-fuzzy concepts
    (World Scientific, 2017) Alcalde, Cristina; Burusco Juandeaburre, Ana; Bustince Sola, Humberto; Fuentes González, Ramón; Sesma Sara, Mikel; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y Computación
    In this paper we study the relation between L-fuzzy morphology and L-fuzzy concepts over complete lattices. In particular, we show how the erosion and dilation operators of the former can be understood in terms of the derivation operators of the latter, even when the set of objects is different from the set of attributes.