Sesma Sara, Mikel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sesma Sara

First Name

Mikel

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 15
  • PublicationOpen Access
    Local properties of strengthened ordered directional and other forms of monotonicity
    (Springer, 2019) Sesma Sara, Mikel; Miguel Turullols, Laura de; Mesiar, Radko; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    In this study we discuss some of the recent generalized forms of monotonicity, introduced in the attempt of relaxing the monotonicity condition of aggregation functions. Specifically, we deal with weak, directional, ordered directional and strengthened ordered directional monotonicity. We present some of the most relevant properties of the functions that satisfy each of these monotonicity conditions and, using the concept of pointwise directional monotonicity, we carry out a local study of the discussed relaxations of monotonicity. This local study enables to highlight the differences between each notion of monotonicity. We illustrate such differences with an example of a restricted equivalence function.
  • PublicationOpen Access
    Strengthened ordered directional and other generalizations of monotonicity for aggregation functions
    (Springer, 2018) Sesma Sara, Mikel; Miguel Turullols, Laura de; Lafuente López, Julio; Barrenechea Tartas, Edurne; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A tendency in the theory of aggregation functions is the generalization of the monotonicity condition. In this work, we examine the latest developments in terms of different generalizations. In particular, we discuss strengthened ordered directional monotonicity, its relation to other types of monotonicity, such as directional and ordered directional monotonicity and the main properties of the class of functions that are strengthened ordered directionally monotone. We also study some construction methods for such functions and provide a characterization of usual monotonicity in terms of these notions of monotonicity.
  • PublicationOpen Access
    Linking mathematical morphology and L-fuzzy concepts
    (World Scientific, 2017) Alcalde, Cristina; Burusco Juandeaburre, Ana; Bustince Sola, Humberto; Fuentes González, Ramón; Sesma Sara, Mikel; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y Computación
    In this paper we study the relation between L-fuzzy morphology and L-fuzzy concepts over complete lattices. In particular, we show how the erosion and dilation operators of the former can be understood in terms of the derivation operators of the latter, even when the set of objects is different from the set of attributes.
  • PublicationOpen Access
    Some properties and construction methods for ordered directionally monotone functions
    (IEEE, 2017-08-24) Sesma Sara, Mikel; Marco Detchart, Cedric; Bustince Sola, Humberto; Barrenechea Tartas, Edurne; Lafuente López, Julio; Kolesárová, Anna; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    In this work we propose a new generalization of the notion of monotonicity, the so-called ordered directionally monotonicity. With this new notion, the direction of increasingness or decreasingness at a given point depends on that specific point, so that it is not the same for every value on the domain of the considered function.
  • PublicationOpen Access
    Curve-based monotonicity: a generalization of directional monotonicity
    (Taylor & Francis, 2019) Roldán López de Hierro, Antonio Francisco; Sesma Sara, Mikel; Špirková, Jana; Lafuente López, Julio; Pradera, Ana; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    In this work we propose a generalization of the notion of directional monotonicity. Instead of considering increasingness or decreasingness along rays, we allow more general paths defined by curves in the n-dimensional space. These considerations lead us to the notion of α-monotonicity, where α is the corresponding curve. We study several theoretical properties of α-monotonicity and relate it to other notions of monotonicity, such as weak monotonicity and directional monotonicity.
  • PublicationOpen Access
    Generalized forms of monotonicity in the data aggregation framework
    (2019) Sesma Sara, Mikel; Bustince Sola, Humberto; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    El proceso de agregación trata el problema de combinar una colección de valores numéricos en un único valor que los represente y las funciones encargadas de esta operación se denominan funciones de agregación. A las funciones de agregación se les exige que cumplan dos condiciones de contorno y, además, han de ser monótonas con respecto a todos sus argumentos. Una de las tendencias en el área de investigación de las funciones de agregación es la relajación de la condición de monotonía. En este respecto, se han introducido varias formas de monotonía relajada. Tal es el caso de la monotonía débil, la monotonía direccional y la monotonía respecto a un cono. Sin embargo, todas estas relajaciones de monotonía están basadas en la idea de crecer, o decrecer, a lo largo de un rayo definido por un vector real. No existe noción de monotonía que permita que la dirección de crecimiento dependa de los valores a fusionar, ni tampoco existe noción de monotonía que considere el crecimiento a lo largo de caminos más generales, como son las curvas. Además, otra de las tendencias en la teoría de la agregación es la extensión a escalas más generales que la de los números reales y no existe relajación de monotonía disponible para este contexto general. En esta tesis, proponemos una colección de nuevas formas de monotonía relajada para las cuales las direcciones de monotonía pueden variar dependiendo del punto del dominio. En concreto, introducimos los conceptos de monotonía direccional ordenada, monotonía direccional ordenada reforzada y monotonía direccional punto a punto. Basándonos en funciones que cumplan las propiedades de monotonía direccional ordenada, proponemos un algoritmo de detección de bordes que justifica la aplicabilidad de estos conceptos. Por otro lado, generalizamos el concepto de monotonía direccional tomando, en lugar de direcciones en Rn, caminos más generales: definimos el concepto de monotonía basado en curvas. Por último, combinando ambas tendencias en la teoría de la agregación, generalizamos el concepto de monotonía direccional a funciones definidas en escalas más generales que la de los números reales.
  • PublicationOpen Access
    Type-2 fuzzy entropy-sets
    (IEEE, 2017) Miguel Turullols, Laura de; Santos, Helida; Sesma Sara, Mikel; Bedregal, Benjamin; Jurío Munárriz, Aránzazu; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The final goal of this study is to adapt the concept of fuzzy entropy of De Luca and Termini to deal with Type-2 Fuzzy Sets. We denote this concept Type-2 Fuzzy Entropy-Set. However, the construction of the notion of entropy measure on an infinite set, such us [0, 1], is not effortless. For this reason, we first introduce the concept of quasi-entropy of a Fuzzy Set on the universe [0, 1]. Furthermore, whenever the membership function of the considered Fuzzy Set in the universe [0, 1] is continuous, we prove that the quasi-entropy of that set is a fuzzy entropy in the sense of De Luca y Termini. Finally, we present an illustrative example where we use Type-2 Fuzzy Entropy-Sets instead of fuzzy entropies in a classical fuzzy algorithm.
  • PublicationOpen Access
    Weak and directional monotonicity of functions on Riesz spaces to fuse uncertain data
    (Elsevier B.V., 2019) Sesma Sara, Mikel; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the theory of aggregation, there is a trend towards the relaxation of the axiom of monotonicity and also towards the extension of the definition to other domains besides real numbers. In this work, we join both approaches by defining the concept of directional monotonicity for functions that take values in Riesz spaces. Additionally, we adapt this notion in order to work in certain convex sublattices of a Riesz space, which makes it possible to define the concept of directional monotonicity for functions whose purpose is to fuse uncertain data coming from type-2 fuzzy sets, fuzzy multisets, n-dimensional fuzzy sets, Atanassov intuitionistic fuzzy sets and interval-valued fuzzy sets, among others. Focusing on the latter, we characterize directional monotonicity of interval-valued representable functions in terms of standard directional monotonicity.
  • PublicationOpen Access
    New measures for comparing matrices and their application to image processing
    (Elsevier, 2018) Sesma Sara, Mikel; Miguel Turullols, Laura de; Pagola Barrio, Miguel; Burusco Juandeaburre, Ana; Mesiar, Radko; Bustince Sola, Humberto; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y Computación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work we present the class of matrix resemblance functions, i.e., functions that measure the difference between two matrices. We present two construction methods and study the properties that matrix resemblance functions satisfy, which suggest that this class of functions is an appropriate tool for comparing images. Hence, we present a comparison method for grayscale images whose result is a new image, which enables to locate the areas where both images are equally similar or dissimilar. Additionally, we propose some applications in which this comparison method can be used, such as defect detection in industrial manufacturing processes and video motion detection and object tracking.
  • PublicationOpen Access
    Directions of directional, ordered directional and strengthened ordered directional increasingness of linear and ordered linear fusion operators
    (IEEE, 2019) Sesma Sara, Mikel; Marco Detchart, Cedric; Lafuente López, Julio; Roldán López de Hierro, Antonio Francisco; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work we discuss the forms of monotonicity that have been recently introduced to relax the monotonicity condition in the definition of aggregation functions. We focus on directional, ordered directional and strengthened ordered directional monotonicity, study their main properties and provide some results about their links and relations among them. We also present two families of functions, the so-called linear fusion functions and ordered linear fusion functions and we study the set of directions for which these types of functions are directionally, ordered directionally and strengthened ordered directionally increasing. In particular, OWA operators are an example of ordered linear fusion functions.