Albiac Alesanco, Fernando José
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Albiac Alesanco
First Name
Fernando José
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
6 results
Search Results
Now showing 1 - 6 of 6
Publication Open Access Uniqueness of unconditional basis of ℓ2⊕T(2)(American Mathematical Society, 2022) Albiac Alesanco, Fernando José; Ansorena, José L.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaWe provide a new extension of Pitt’s theorem for compact operators between quasi-Banach lattices which permits to describe unconditional bases of finite direct sums of Banach spaces X1 · · · Xn as direct sums of unconditional bases of their summands. The general splitting principle we obtain yields, in particular, that if each Xi has a unique unconditional basis (up to equivalence and permutation), then X1 · · · Xn has a unique unconditional basis too. Among the novel applications of our techniques to the structure of Banach and quasi-Banach spaces we have that the space ℓ2⊕T(2) has a unique unconditional basis.Publication Open Access Uniqueness of unconditional basis of infinite direct sums of quasi-Banach spaces(Kluwer Academic Publishers, 2022) Albiac Alesanco, Fernando José; Ansorena, José L.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThis paper is devoted to providing a unifying approach to the study of the uniqueness of unconditional bases, up to equivalence and permutation, of infinite direct sums of quasi-Banach spaces. Our new approach to this type of problem permits to show that a wide class of vector-valued sequence spaces have a unique unconditional basis up to a permutation. In particular, solving a problem from Albiac and Leránoz (J Math Anal Appl 374(2):394-401, 2011. https://doi.org/10.1016/j.jmaa.2010.09.048) we show that if X is quasi-Banach space with a strongly absolute unconditional basis then the infinite direct sum -1(X) has a unique unconditional basis up to a permutation, even without knowing whether X has a unique unconditional basis or not. Applications to the uniqueness of unconditional structure of infinite direct sums of non-locally convex Orlicz and Lorentz sequence spaces, among other classical spaces, are also obtained as a by-product of our work.Publication Open Access Unconditional and quasi-greedy bases in L-p with applications to Jacobi polynomials Fourier series(European Mathematical Society, 2019) Albiac Alesanco, Fernando José; Ansorena, José L.; Ciaurri, Óscar; Varona, Juan L.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaWe show that the decreasing rearrangement of the Fourier series with respect to the Jacobi polynomials for functions in L-p does not converge unless p = 2. As a by-product of our work on quasi-greedy bases in L-p(µ), we show that no normalized unconditional basis in L-p, p not equal 2, can be semi-normalized in L-q for q not equal p, thus extending a classical theorem of Kadets and Pelczynski from 1968.Publication Open Access Asymptotic greediness of the Haar system in the spaces Lp[0 , 1] , 1< p< ∞(Springer, 2019) Albiac Alesanco, Fernando José; Ansorena, José L.; Berná, Pablo M.; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasOur aim in this paper is to attain a sharp asymptotic estimate for the greedy constant Cg[H(p), Lp] of the (normalized) Haar system H(p) in Lp[0 , 1] for 1 < p < ∞. We will show that the super-democracy constant of H(p) in Lp[0 , 1] grows as p∗= max { p, p/ (p- 1) } as p∗ goes to ∞. Thus, since the unconditionality constant of H(p) in Lp[0 , 1] is p∗- 1 , the well-known general estimates for the greedy constant of a greedy basis obtained from the intrinsic features of greediness (namely, democracy and unconditionality) yield that p∗≲Cg[H(p),Lp]≲(p∗)2. Going further, we develop techniques that allow us to close the gap between those two bounds, establishing that, in fact, Cg[H(p), Lp] ≈ p∗. Our work answers a question that was raised by Hytonen (2015).Publication Open Access Greedy approximation for biorthogonal systems in quasi-Banach spaces(Instytut Matematyczny, 2021) Albiac Alesanco, Fernando José; Ansorena, José L.; Berná, Pablo M.; Wojtaszczyk, Przemyslaw; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasThe general problem addressed in this work is the development of a systematic study of the thresholding greedy algorithm for general biorthogonal systems in quasi-Banach spaces from a functional-analytic point of view. If (Formula Presented) is a biorthogonal system in X then for each x ∈ X we have a formal expansion (Formula Presented). The thresholding greedy algorithm (with threshold ε > 0) applied to x is formally defined as (Formula Presented). The properties of this operator give rise to the different classes of greedy-type bases. We revisit the concepts of greedy, quasi-greedy, and almost greedy bases in this comprehensive framework and provide the (non-trivial) extensions of the corresponding characterizations of those types of bases. As a by-product of our work, new properties arise, and the relations among them are carefully discussed.Publication Open Access Projections and unconditional bases in direct sums of ℓp SPACES, 0(Wiley, 2021) Albiac Alesanco, Fernando José; Ansorena, José L.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaWe show that every unconditional basis in a finite direct sum ⊕p∈Aℓp , with A ⊂ (0,∞], splits into unconditional bases of each summand. This settles a 40 years old question raised in 'A. Ortyński, Unconditional bases in ℓp ⊕ ℓq, 0< p < q <1, Math. Nachr. 103 (1981), 109–116'. As an application we obtain that for any A ⊂ (0,1] finite, the spaces Z = ⊕p∈A ℓp,Z ⊕ ℓ2, and Z ⊕ c0 have a unique unconditional basis up to permutation.