Person: Ruiz de Galarreta, José Ignacio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Ruiz de Galarreta
First Name
José Ignacio
person.page.departamento
Derecho Privado
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
9 results
Search Results
Now showing 1 - 9 of 9
Publication Embargo Predicting the spatial distribution of reducing sugars using near-infrared hyperspectral imaging and chemometrics: a study in multiple potato genotypes(Elsevier, 2025-03-27) Peraza Alemán, Carlos Miguel; Arazuri Garín, Silvia; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Barandalla, Leire; López Maestresalas, Ainara; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOODThe determination of reducing sugars in potatoes is important due to their impact on product quality during industrial processing. The significant variability of these compounds between genotypes presents a challenge to the development of accurate predictive models. This study evaluated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of reducing sugars in potatoes. For this, a wide range of genotypes (n=92) from two seasons (2020-2021) was selected. Partial Least Squares Regression (PLSR) and Support Vector Machine Regression (SVMR) methods were used to build the prediction models. Furthermore, interval PLS (iPLS), recursive weighted PLS (rPLS), Genetic Algorithm (GA) and Competitive Adaptive Reweighted Sampling (CARS) were used for relevant wavelength identification to develop less computationally complex models. The best full spectrum model (SNV-PLSR) achieved coefficient of determination and root mean square error values of 0.88 and 0.053% and 0.86 and 0.057%, for calibration and external validation, respectively. Variable selection algorithms successfully reduced the dimensionality of the data without compromising the performance of the models. Robust predicted models were built with only 2.65% (CARS-PLSR) and 3.57% (iPLS-SVMR) of the total wavelengths. Finally, a pixel-wise prediction was performed on the validation set and chemical images were built to visualise the spatial distribution of reducing sugars. This study demonstrated that NIR-HSI is a feasible technique for predicting reducing sugars in several potato genotypes.Publication Open Access Phytochemicals determination and classification in purple and red fleshed potato tubers by analytical methods and near infrared spectroscopy(Wiley, 2016) Tierno, Roberto; López Maestresalas, Ainara; Riga, Patrick; Arazuri Garín, Silvia; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakBACKGROUND: Over the last two decades, the attractive colours and shapes of pigmented tubers and the increasing concern about the relationship between nutrition and health have contributed to the expansion of their consumption and a specialty market. Thus, we have quantified the concentration of health promoting compounds such as soluble phenolics, monomeric anthocyanins, carotenoids, vitamin C, and hydrophilic antioxidant capacity, in a collection of 18 purple- and red-fleshed potato accessions. RESULTS: Cultivars and breeding lines high in vitamin C, such as Blue Congo, Morada and Kasta, have been identified. Deep purple cultivars Violet Queen, Purple Peruvian and Vitelotte showed high levels of soluble phenolics, monomeric anthocyanins, and hydrophilic antioxidant capacity, whereas relatively high carotenoid concentrations were found in partially yellow coloured tubers, such as Morada, Highland Burgundy Red, and Violet Queen. CONCLUSION: The present characterisation of cultivars and breeding lines with high concentrations of phytochemicals is an important step both to support the consideration of specialty potatoes as a source of healthy compounds, and to obtain new cultivars with positive nutritional characteristics. Moreover, by using near infrared spectroscopy a non-destructive identification and classification of samples with different levels of phytochemicals is achieved, offering an unquestionable contribution to the potato industry for future automatic discrimination of varieties.Publication Open Access Detection by multiplex PCR and characterization of nontoxigenic strains of Pseudomonas syringae pv. phaseolicola from different places in Spain. Short communication(Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 2006) Rico, A.; Erdozáin García, María; Ortiz Barredo, Amaia; Ruiz de Galarreta, José Ignacio; Murillo Martínez, Jesús; Producción Agraria; Nekazaritza EkoizpenaEl control eficiente de la grasa de la judía causada por Pseudomonas syringae pv. phaseolicola se basa principalmente en la utilización de semilla libre del patógeno. La detección del patógeno en semilla se efectúa mediante métodos altamente sensibles basados en la detección por PCR de los genes responsables de la biosíntesis de la faseolotoxina, la cual, hasta ahora, se consideraba que era sintetizada por todas las cepas del patógeno con importancia epidemiológica. Sin embargo, en la Comunidad de Castilla y León, España, las epidemias de grasa de la judía en campo se asocian frecuentemente con cepas no toxigénicas de P. syringae pv. phaseolicola, que no pueden ser detectadas con los métodos moleculares y serológicos actuales. Los resultados presentados en este trabajo demuestran la existencia de aislados no toxigénicos de P. syringae pv. phaseolicola en zonas distintas de Castilla y León, lo que implica la necesidad de establecer una metodología fiable para la certificación de semillas de judía. Con este propósito, se presenta un sencillo protocolo en dos fases que permite la identificación de los dos tipos de aislados, y que se basa en una PCR multiplex con enriquecimiento a partir de extractos de semilla y en ensayos de patogenicidad.Publication Open Access Evaluation of near-infrared hyperspectral imaging for the assessment of potato processing aptitude(Frontiers Media, 2022) López Maestresalas, Ainara; López Molina, Carlos; Oliva Lobo, Gil Alfonso; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Peraza Alemán, Carlos Miguel; Arazuri Garín, Silvia; Ingeniaritza; Estatistika, Informatika eta Matematika; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Estadística, Informática y MatemáticasThe potato (Solanum tuberosum L.) is the world's fifth most important staple food with high socioeconomic relevance. Several potato cultivars obtained by selection and crossbreeding are currently on the market. This diversity causes tubers to exhibit different behaviors depending on the processing to which they are subjected. Therefore, it is interesting to identify cultivars with specific characteristics that best suit consumer preferences. In this work, we present a method to classify potatoes according to their cooking or frying as crisps aptitude using NIR hyperspectral imaging (HIS) combined with a Partial Least Squares Discriminant Analysis (PLS-DA). Two classification approaches were used in this study. First, a classification model using the mean spectra of a dataset composed of 80 tubers belonging to 10 different cultivars. Then, a pixel-wise classification using all the pixels of each sample of a small subset of samples comprised of 30 tubers. Hyperspectral images were acquired using fresh-cut potato slices as sample material placed on a mobile platform of a hyperspectral system in the NIR range from 900 to 1,700 nm. After image processing, PLS-DA models were built using different pre-processing combinations. Excellent accuracy rates were obtained for the models developed using the mean spectra of all samples with 90% of tubers correctly classified in the external dataset. Pixel-wise classification models achieved lower accuracy rates between 66.62 and 71.97% in the external validation datasets. Moreover, a forward interval PLS (iPLS) method was used to build pixel-wise PLS-DA models reaching accuracies above 80 and 71% in cross-validation and external validation datasets, respectively. Best classification result was obtained using a subset of 100 wavelengths (20 intervals) with 71.86% of pixels correctly classified in the validation dataset. Classification maps were generated showing that false negative pixels were mainly located at the edges of the fresh-cut slices while false positive were principally distributed at the central pith, which has singular characteristics.Publication Embargo Mapping acrylamide content in potato chips using near-infrared hyperspectral imaging and chemometrics(Elsevier, 2025-03-14) Peraza Alemán, Carlos Miguel; López Maestresalas, Ainara; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Barandalla, Leire; Arazuri Garín, Silvia; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOODThis study investigated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of acrylamide content in potato chips. A total of 300 tubers from two potato varieties (Agria and Jaerla) grown in two seasons and processed under the same frying conditions were analysed. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR), combined with a logarithmic transformation of the acrylamide levels, were applied to develop predictive models. The most optimal outcomes for PLSR yielded R2 p: 0.85, RMSEP: 201 μg/kg and RPD: 2.53, while for SVMR yielded R2 p: 0.80, RMSEP: 229 μg/kg and RPD: 2.22. Furthermore, the selection of significant wavelengths enabled an 87.95 % reduction in variables without affecting the model’s accuracy. Finally, spatial mapping of acrylamide content was conducted on all chips in the external validation set. This method provides both quantification and visualization capabilities, thus enhancing quality control for acrylamide identification in processed potatoes.Publication Open Access Prediction of main potato compounds by NIRS(AIDIC, 2017) López Maestresalas, Ainara; Pérez Roncal, Claudia; Tierno, Roberto; Arazuri Garín, Silvia; Ruiz de Galarreta, José Ignacio; Jarén Ceballos, Carmen; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaPotato (Solanum tuberosum, L) compounds are generally determined by analytical methods including gasliquid chromatography (GLC), HPLC and UV-VIS spectrophotometry. These methods require a lot of time and are destructive. Therefore, they seem to be not suitable for in-line applications in the food industry. Nearinfrared spectroscopy (NIRS) is a technique that presents some advantages over reference methods for quantitative analysis of agricultural and food products since it is fast, reliable and non-destructive. For this reason, in this study, quantitative analyses were carried out to determine main compounds in potatoes using NIRS. Potato tubers grown in two consecutive years were used for the analyses. NIR spectral acquisition was acquired on lyophilized samples. In year 1, a total of 135 samples were used while 228 samples were used in year 2. Lyophilized samples were also scanned by NIRS, two replicates per samples were acquired and the mean spectrum of each sample was used for the analysis. Different chemical analyses were carried out each year. Thus, in year 1 the following parameters were quantified: reducing sugars (RS) and nitrogen (N), whereas in year 2, total soluble phenolics (TSP) and hydrophilic antioxidant capacity (HAC) were extracted and quantified. Then, chemometric analyses were performed using Unscrambler X (version 10.3, CAMO software AS, Oslo, Norway) to correlate wet chemical analysis with spectral data. Quantitative analyses based on PLS regression models were developed in order to predict the above chemical compounds of tubers in a non-destructive manner. Good PLS regression models were obtained for the prediction of nitrogen and TSP with coefficients of determination (R2) above 0.83. Moreover, PLS models obtained for the estimation of HAC could be used for screening and approximate calibrations.Publication Open Access Imágenes hiperespectrales para el estudio de la respuesta a la deficiencia de nitrógeno de distintos cultivares de patata(Sociedad Española de Ciencias Hortícolas, 2021) López Maestresalas, Ainara; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Álvarez Morezuelas, Alba; Barandalla, Leire; Arazuri Garín, Silvia; Ingeniería; IngeniaritzaEl cambio climático es uno de los mayores retos de la agricultura moderna. El aumento del rendimiento de los cultivos en el futuro sólo será posible si pueden hacer frente a las consecuencias del cambio climático causado por el aumento de CO2 en la atmósfera. En el cultivo de la patata es muy probable que los estreses abióticos se incrementen considerablemente comprometiendo la sostenibilidad de su producción. A largo plazo, las condiciones de elevado CO2 podrían alterar la toma y transporte de nutrientes, particularmente del nitrógeno (N). Esto conlleva la necesidad de seleccionar cultivares que por sus características genéticas, fisiológicas y agronómicas se adapten mejor a las condiciones del cambio climático global, particularmente a la eficiencia en el uso del N. Para ello, en este estudio, se ha empleado la tecnología de imágenes hiperespectrales con el objetivo de desarrollar modelos de clasificación de variedades más eficientes en el uso del N. Se han muestreado plantas de dos campos experimentales: control y con una reducción del 75% de aporte de N. Se han adquirido imágenes hiperespectrales de 120 hojas de las plantas control y 120 de plantas sometidas a una reducción del 75% de aporte de N. Se han aplicado métodos multivariantes de clasificación para comprobar el potencial de las imágenes hiperespectrales en la identificación de cultivares de patata mejor adaptados a una deficiencia de N, con resultados prometedores. Además, para evaluar la respuesta de las plantas a las diferentes dosis de N, se analizará el contenido total de N, lo que permitirá evaluar la eficiencia en el uso del N en función de la productividad, así como la concentración de metabolitos nitrogenados.Publication Open Access Imágenes hiperespectrales para el estudio de la respuesta a los estreses abióticos (deficiencia de riego y abonado) de distintos cultivares de patata(Ediciones de Horticultura, 2021) López Maestresalas, Ainara; Jarén Ceballos, Carmen; Pérez Roncal, Claudia; Ruiz de Galarreta, José Ignacio; Álvarez, Alba; Barandalla, Leire; Arazuri Garín, Silvia; Ingeniería; IngeniaritzaEl objetivo de este trabajo fue evaluar el potencial de las imágenes hiperespectrales para clasificar tubérculos sometidos a estreses abióticos controlados.Publication Open Access Potato genetic resources in Spain(International Plant Genetic Resources Institute, 2001) Ritter, E.; Ruiz de Galarreta, José Ignacio; Carrasco, A.; Ruiz De Arcaute Rivero, Roberto; Veramendi Charola, Jon; Mingo Castel, Ángel; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaPlant genetic resources activities in Spain are globally organized by the Instituto Nacional de Investigación Agraria (INIA) and in particular by one of its institutes, Centro de Recursos Fitogenéticos (CRF). Collections of beans, maize, cereals and many other crops are maintained, evaluated and characterized in the station at Alcala de Henares near Madrid. However, the situation is different for potato. Germplasm collections of potato are maintained in collaborating institutes or private companies. The largest collection with 604 accessions is held at NEIKER (former CIMA, Centro de Investigación y Mejora Agraria), which has been traditionally, as the Station for potato improvement (Estación de la Mejora de la Patata), the cradle of seed potatoes in Spain. Other remarkable collections are maintained at the Public University of Navarra (UPNA), the Instituto de Agrobiotecnología y Recursos Naturales (116 accessions) and the public enterprise APPACALE (213 accessions), which produces seed potatoes and also performs potato breeding in Spain.