Del Villar, Ignacio
No Profile Picture Available
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Del Villar
First Name
Ignacio
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
22 results
Search Results
Now showing 1 - 10 of 22
Publication Open Access Nano-photonic crystal D-shaped fiber devices for label-free biosensing at the attomolar limit of detection(Wiley, 2024-07-23) Del Villar, Ignacio; González-Valencia, Esteban; Kwietniewski, Norbert; Burnat, Dariusz; Armas, Dayron; Pitula, Emil; Janik, Monika; Matías Maestro, Ignacio; Giannetti, Ambra; Torres, Pedro; Chiavaioli, Francesco; Smietana, Mateusz; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaMaintaining both high sensitivity and large figure of merit (FoM) is crucial in regard to the performance of optical devices, particularly when they are intended for use as biosensors with extremely low limit of detection (LoD). Here, a stack of nano-assembled layers in the form of 1D photonic crystal, deposited on D-shaped single-mode fibers, is created to meet these criteria, resulting in the generation of Bloch surface wave resonances. The increase in the contrast between high and low refractive index (RI) nano-layers, along with the reduction of losses, enables not only to achieve high sensitivity, but also a narrowed resonance bandwidth, leading to a significant enhancement in the FoM. Preliminary testing for bulk RI sensitivity is carried out, and the effect of an additional nano-layer that mimics a biological layer where binding interactions occur is also considered. Finally, the biosensing capability is assessed by detecting immunoglobulin G in serum at very low concentrations, and a record LoD of 70 aM is achieved. An optical fiber biosensor that is capable of attaining extraordinarily low LoD in the attomolar range is not only a remarkable technical outcome, but can also be envisaged as a powerful tool for early diagnosis of diseases.Publication Open Access Optimization in nanocoated D-shaped optical fiber sensors(Optical Society of America, 2017) Del Villar, Ignacio; Zubiate Orzanco, Pablo; Ruiz Zamarreño, Carlos; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Gobierno de Navarra / Nafarroako GobernuaNanocoated D-shaped optical fibers have been proven as effective sensors. Here, we show that the full width at half minimum (FWHM) of lossy mode resonance can be reduced by optimizing the nanocoating width, thickness and refractive index. As a counterpart, several resonances are observed in the optical spectrum for specific conditions. These resonances are caused by multiple modes guided in the nanocoating. By optimizing the width of the coating and the imaginary part of its refractive index, it is possible to isolate one of these resonances, which allows one to reduce the full width at half minimum of the device and, hence, to increase the figure of merit. Moreover, it is even possible to avoid the need of a polarizer by designing a device where the resonance bands for TE and TM polarization are centered at the same wavelength. This is interesting for the development of optical filters and sensors with a high figure of merit.Publication Open Access Design rules for lossy mode resonance based sensors(Optical Society of America, 2012) Del Villar, Ignacio; Hernáez Sáenz de Zaitigui, Miguel; Ruiz Zamarreño, Carlos; Sánchez Zábal, Pedro; Fernández Valdivielso, Carlos; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaLossy mode resonances can be obtained in the transmission spectrum of cladding removed multimode optical fiber coated with a thin-film. The sensitivity of these devices to changes in the properties of the coating or the surrounding medium can be optimized by means of the adequate parameterization of the coating refractive index, the coating thickness and the surrounding medium refractive index (SMRI). Some basic rules of design, which enable the selection of the best parameters for each specific sensing application, are indicated in this work.Publication Open Access D-shape optical fiber pH sensor based on lossy mode resonances (LMRs)(IEEE, 2016-01-07) Zubiate Orzanco, Pablo; Ruiz Zamarreño, Carlos; Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio IngeniaritzaThe fabrication and characterization of an optical fiber pH sensor based on Lossy Mode Resonances (LMRs) is presented. PAH/PAA polymeric thin-films fabricated onto side-polished D-shaped optical fibers are used as LMR supporting coatings. The thickness of PAH/PAA coatings can be modified as a function of the external medium pH. As a consequence of this variation, the effective refractive index of the structure will change, producing a shift of the LMR. The fabricated sensor has been used to measure pH from 4.0 to 5.0. This pH sensor showed a sensitivity of 101.3 nm per pH unit, which means a resolution of ~6×10-4 pH units by using a conventional communications Optical Spectrum Analyzer (OSA), which is an improvement over commercial pH sensors.Publication Open Access Mode transitions and thickness measurements during deposition of nanoscale TiO2 coatings on tilted fiber Bragg gratings(IEEE, 2022) Imas González, José Javier; Albert, Jacques; Del Villar, Ignacio; Ozcariz Celaya, Aritz; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe mode transition is a phenomenon observed in thin film coated long period fiber gratings (LPGs) and singlemode multimode single-mode (SMS) fibers for certain values of the coating thickness and refractive index, resulting in increased sensitivity for sensing applications. It is shown here that mode transitions occur simultaneously for a large number of mode resonances in the transmission spectra of tilted fiber Bragg gratings (TFBG) measured during the deposition of ~350nm thick TiO2 coatings by Atomic Layer Deposition (ALD). In TFBGs, the mode transition shows up as an acceleration of the resonance wavelength shift vs thickness, but without fading of the resonance amplitude. Furthermore, the results show that the mode transition for cladding modes with predominantly “TE” polarization at the cladding boundary is significantly sharper than that of predominantly “TM” polarized modes and that it occurs at a smaller coating thickness (<100 nm vs >200 nm). Finally, using a separately determined coating refractive index (2.14, by ellipsometry on witness flats deposited simultaneously) and simulations of the resonance shifts of the TFBG with coating thickness, it is demonstrated that a TFBG connected to a spectral interrogation system can be used to measure the growth of a coating on the surface of the fiber in real time.Publication Open Access Deposition of coatings on long-period fiber gratings: tunnel effect analogy(Springer, 2006) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaThe sensitivity of Long-period fiber gratings (LPFGs), coated with high-refractive-index thin film overlays, to the refractive index and the thickness of the overlay, and to the ambient refractive index, can be enhanced with a design based on a two-overlay coating of an LPFG. The first overlay of lower refractive index than the cladding affects the guidance of a cladding mode in the second overlay of higher refractive index than the cladding. This causes a more abrupt cladding modal redistribution than with the deposition of a unique high-refractive-index overlay. The phenomenon is analyzed with a method based on a vectorial analysis of modes and the application of coupled mode theory.Publication Open Access Generation of lossy mode resonances with absorbing thin-films(IEEE, 2010) Del Villar, Ignacio; Ruiz Zamarreño, Carlos; Hernáez Sáenz de Zaitigui, Miguel; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe generation of lossy mode resonances with absorbing thin-films is analyzed with electromagnetic theory. The main differences with surface plasmon resonances are presented and some rules are given towards an optimum design of sensing devices based on absorbing thin-film coated silica substrates. The material selected for the absorbing thin-film is ITO, which is adequate for supporting both surface plasmon resonances and lossy mode resonances.Publication Open Access Refractometric sensors based on multimode interference in a thin-film coated singlemode– multimode–single-mode structure with reflection configuration(Optical Society of America, 2014) Del Villar, Ignacio; Socorro Leránoz, Abián Bentor; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaThin-film coated single-mode–multimode–single-mode (SMS) structures have been analyzed both theoretically and experimentally with the aim of detecting different refractive indices. By adequate selection of the thickness of the thin film and of the diameter of the multimode segment in the SMS structure, a seven-fold improvement can be obtained in the sensitivity of the device to the surrounding medium refractive index, achieving a maximum sensitivity of 1199.18 nm∕refractive index unit for the range of refractive indices from 1.321 to 1.382. Using layer-by-layer self-assembly for deposition, both on the cladding and on the tip of the multimode segment, allows the reflected power to increase, which avoids the application of a mirror on the tip of the multimode segment.Publication Open Access Mode transition in complex refractive index coated single-mode–multimode–single-mode structure(Optical Society of America, 2013) Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaBy coating a single-mode–multimode–single-mode (SMS) structure with a high refractive index thin-film it is possible to obtain a transition of modes for specific combinations of thin-film thickness, thinfilm refractive index and surrounding medium refractive index, which permits to develop devices with a high sensitivity to specific parameters. In order to gain a better knowledge of the phenomenon the experimental results are corroborated numerically with the Transfer-Matrix-Method. The influence of losses in the thin-film has also been studied. The results obtained prove that a thin-film coated SMS structure is a simple and costeffective platform for development of sensors and optical filters.Publication Open Access Long period fiber gratings with overlay of variable refractive index(IEEE, 2005) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaA theoretical analysis is presented of a long-period fiber grating (LPFG) with an overlay of variable refractive index. The highest sensitivity of the resonance wavelengths to variations in the refractive index of the overlay can be optimized. There are two key points for a good design: the selection of an overlay refractive index close to that of the cladding of the LPFG and the overlay thickness. The problem is analyzed with a numerical method based on coupled-mode theory.