Del Villar, Ignacio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Del Villar
First Name
Ignacio
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
138 results
Search Results
Now showing 1 - 10 of 138
Publication Open Access Twin lossy mode resonance on a single D-shaped optical fiber(Optica, 2021) Imas González, José Javier; Ruiz Zamarreño, Carlos; Del Villar, Ignacio; Pérez Escudero, José Manuel; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThis letter presents the fabrication of dual lossy mode resonance (LMR) refractometers based on titanium dioxide (TiO2) and tin oxide (SnO2) thin films deposited on a single side-polished D-shaped optical fiber. For the first time, to the best of our knowledge, two independent LMRs are obtained in the same D-shaped optical fiber, by using a step-shaped nanostructure consisting of a first section of TiO2 with a thickness of 120 nm and a second section with a thickness of 140 nm (120 nm of TiO2 and 20 nm of SnO2). Each section is responsible for generating a first-order LMR with TM-polarized light (LMRTM). TiO2 is deposited by atomic layer deposition and SnO2 by electron-beam deposition. The theoretical results show that the depth of each of the resonances of the dual LMR depends on the length of the corresponding section. Two experimental devices were fabricated with sections of different lengths, and their sensitivities were studied, achieving values ∼ 4000 nm/refractive index unit (RIU) with a maximum of 4506 nm/RIU for values of the SRI between 1.3327 and 1.3485.Publication Open Access All fiber interferometer for ice detection(Optica Publishing Group, 2018) Arozarena Arana, Jesús Antonio; Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISCThis work presents an etched single-mode - multimode - single-mode structure that detects the solid-to-liquid change of state of the water due to an increased refractive index sensitivity within the 1.308 - 1.321 RIU rangePublication Open Access Fabrication of Bragg gratings on the end facet of standard optical fibers by sputtering the same material(IEEE, 2016) Ascorbe Muruzabal, Joaquín; Corres Sanz, Jesús María; Del Villar, Ignacio; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaA sputtering process has been applied to deposit quarter-wavelength stacks on the end facet of cleaved optical fibers by using only one sputtering target. Standard multimode optical fibers were used as substrates to fabricate broadband filters, and the experimentally measured spectral responses of these devices are shown. Periodical changes in the refractive index of the coating have been achieved by changing the vacuum chamber pressure. A reflected peak with a full-width at half-maximum of 20 nm centered at 440 nm has been obtained, which provides a good structure for the development of optical fiber sensors working with the wavelength detection technique. This optical structure can be used for several purposes: as tunable wavelength filters or optical fiber sensors or to improve the performance of fluorescence sensors. A theoretical analysis of these structures corroborates the experimental results and allows some rules to be obtained.Publication Open Access Low cutoff wavelength etched SMS structures towards verification of the quality of automotive antifreeze(IEEE, 2020) Rodríguez Rodríguez, Wenceslao Eduardo; Rodríguez Rodríguez, Adolfo Josué; Ruiz Zamarreño, Carlos; Del Villar, Ignacio; Zúñiga Alanís, Manuel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua, 2019 904 116; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26Optical fiber single mode-multimode-single mode (SMS) structures can be used as wavelength detection-based sensors. In this work, we focus on the performance at short wavelengths, where optical sources and detectors are less expensive. Here, a self-image band with a high transmission power is monitored in this short-wavelength range. In addition, the diameter and the length of the SMS structure have been optimized in order to improve the sensitivity of the device. In this sense, a maximum refractive index sensitivity of 305 nm/RIU was achieved by an etched SMS with a diameter of 34μ m. Furthermore, the obtained devices were used for testing the quality of automotive coolant and antifreeze liquid.Publication Open Access Sensitivity enhancement by diameter reduction in low cutoff wavelength single-mode multimode singlemode (SMS) fiber sensors(IEEE, 2017) Goñi Carnicero, Jaime; Del Villar, Ignacio; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaTwo different low cutoff wavelength single-mode fibers were used in single-mode multimode single-mode (SMS) configuration with the aim of designing sensors operating at short wavelengths, where optical sources and spectrometers are less expensive than in telecommunications bands. The diameter of the SMS structure was reduced with an etching process based on hydrofluoric acid immersion. The results prove that the devices can operate at wavelength ranges from 600 to 1200 nm and that multiple peaks can be obtained, each one with a different sensitivity that is proportional to the wavelength. Moreover, a fivefold increase in sensitivity to refractive index can be obtained. This high sensitivity indicates the possibility to apply this simple and cost-effective device in other applications such as biosensors or chemical sensors.Publication Open Access Direct functionalization of TiO2/PSS sensing layer for an LMR-based optical fiber reusable biosensor(IEEE, 2023) Santano Rivero, Desiree; Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2033Functionalization plays a crucial role in the development of biosensors. In this study, bioreceptors were directly immobilized onto the surface of a sensing layer after physical activation, avoiding the need for longer and more complex functionalization systems. This direct immobilization was applied to an optical sensing platform based on lossy mode resonances (LMRs) generated by a thin-film of titanium (IV) dioxide/poly(sodium 4-styrenesulfonate) (TiO 2 /PSS). To generate the LMR, a 200-micron bare optical fiber was coated with TiO 2 /PSS using the layer-by-layer self-assembly technique. The PSS of the sensing layer was then physically activated using either UV-ozone or plasma to immobilize anti-rabbit IgG bioreceptors. This enabled specific and label-free detection of rabbit IgG concentrations ranging from 0.002 to 2 mg/ml. The results presented in this work include real-time detection of rabbit IgG, a comparison between the two activation techniques (UV-ozone and plasma), and an analysis of the biosensor’s reusability over four consecutive cycles, which demonstrates the promising potential of the TiO 2 /PSS sensing layer for biosensing applications.Publication Open Access A comprehensive study of optical resonances in metals, dielectrics, and excitonic materials in double interface structures(Elsevier, 2025-02-01) Imas González, José Javier; Matías Maestro, Ignacio; Del Villar, Ignacio; Ozcariz Celaya, Aritz; Vitoria Pascual, Ignacio; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCFrom an optical perspective, depending on the relationship between the real (n) and imaginary (k) parts of its refractive index, three broad categories of materials can be distinguished: metals (k ¿ n), dielectrics (n ¿ k), and materials in which n ¿ k (termed here excitonic materials). The modes and optical resonances that appear in a thin film bounded by two dielectrics with similar refractive index, what we call here a double interface structure, have been widely studied in the case of metals, but not for dielectrics, or materials with n ¿ k. In this work, we propose a new approach, based on employing the phase matching condition to correlate the resonances that appear in the wavelength versus incident angle color maps of the reflected power with the modal analysis of the cross section of the structure. This analysis is performed, using an attenuated total reflection (ATR) setup, for thin film materials that belong to each of the mentioned categories: a metal (gold, Au), a dielectric (titanium dioxide, TiO2), and a material with n ¿ k (chromium, Cr). The theoretical analysis is supported with experimental results. It is demonstrated that this method enables to identify any resonance at any wavelength or incident angle, being valid for all three types of materials. Therefore, it is considered the suggested approach will help the research in these materials and in the double interface structure in the optics and photonics field.Publication Open Access Deposition of coatings on long-period fiber gratings: tunnel effect analogy(Springer, 2006) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaThe sensitivity of Long-period fiber gratings (LPFGs), coated with high-refractive-index thin film overlays, to the refractive index and the thickness of the overlay, and to the ambient refractive index, can be enhanced with a design based on a two-overlay coating of an LPFG. The first overlay of lower refractive index than the cladding affects the guidance of a cladding mode in the second overlay of higher refractive index than the cladding. This causes a more abrupt cladding modal redistribution than with the deposition of a unique high-refractive-index overlay. The phenomenon is analyzed with a method based on a vectorial analysis of modes and the application of coupled mode theory.Publication Open Access Mode transitions and thickness measurements during deposition of nanoscale TiO2 coatings on tilted fiber Bragg gratings(IEEE, 2022) Imas González, José Javier; Albert, Jacques; Del Villar, Ignacio; Ozcariz Celaya, Aritz; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe mode transition is a phenomenon observed in thin film coated long period fiber gratings (LPGs) and singlemode multimode single-mode (SMS) fibers for certain values of the coating thickness and refractive index, resulting in increased sensitivity for sensing applications. It is shown here that mode transitions occur simultaneously for a large number of mode resonances in the transmission spectra of tilted fiber Bragg gratings (TFBG) measured during the deposition of ~350nm thick TiO2 coatings by Atomic Layer Deposition (ALD). In TFBGs, the mode transition shows up as an acceleration of the resonance wavelength shift vs thickness, but without fading of the resonance amplitude. Furthermore, the results show that the mode transition for cladding modes with predominantly “TE” polarization at the cladding boundary is significantly sharper than that of predominantly “TM” polarized modes and that it occurs at a smaller coating thickness (<100 nm vs >200 nm). Finally, using a separately determined coating refractive index (2.14, by ellipsometry on witness flats deposited simultaneously) and simulations of the resonance shifts of the TFBG with coating thickness, it is demonstrated that a TFBG connected to a spectral interrogation system can be used to measure the growth of a coating on the surface of the fiber in real time.Publication Open Access Fiber-based label-free D-dimer detection for early diagnosis of venous thromboembolism(SPIE, 2020) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz Zamarreño, Carlos; Fernández Irigoyen, Joaquín; Giannetti, Ambra; Baldini, Francesco; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Santamaría Martínez, Enrique; Del Villar, Ignacio; Chiavaioli, Francesco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónD-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. The combination of fiber-optic-based platforms for biosensing with the nanotechnologies is opening up the chance for the development of in situ, portable, lightweight, versatile, reliable and high-performance optical sensing devices towards lab-on-fiber technology. The generation of lossy mode resonances (LMRs) by means of the deposition of nm-thick absorbing metal-oxide films on special geometric-modified fibers allows measuring precisely and accurately surface refractive index changes, which are due to the binding interaction between a biological recognition element and the analyte under investigation. This approach enhances the light-matter interaction in a strong way, thus turning out to be more sensitive compared to other optical technology platforms, such as fiber gratings or surface plasmon resonance. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on LMR in fiber-optics are presented by monitoring in real-time the shift of the LMR related to the biomolecule interactions thanks to a conventional wavelength-interrogation system and an ad-hoc developed microfluidics. A detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value, has been attained for D-dimer spiked in human serum. The comparison of the results achieved with proteomics-based methodologies, which allows for the identification of betaand gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer.