Person: Pereira Dimuro, Graçaliz
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Pereira Dimuro
First Name
Graçaliz
person.page.departamento
Automática y Computación
person.page.instituteName
ORCID
0000-0001-6986-9888
person.page.upna
811336
Name
46 results
Search Results
Now showing 1 - 10 of 46
Publication Open Access On fuzzy implications derived from general overlap functions and their relation to other classes(MDPI, 2023) Pinheiro, Jocivania; Santos, Helida; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Santiago, Regivan; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCThere are distinct techniques to generate fuzzy implication functions. Despite most of them using the combination of associative aggregators and fuzzy negations, other connectives such as (general) overlap/grouping functions may be a better strategy. Since these possibly non-associative operators have been successfully used in many applications, such as decision making, classification and image processing, the idea of this work is to continue previous studies related to fuzzy implication functions derived from general overlap functions. In order to obtain a more general and flexible context, we extend the class of implications derived by fuzzy negations and t-norms, replacing the latter by general overlap functions, obtaining the so-called (GO, N)-implication functions. We also investigate their properties, the aggregation of (GO, N)-implication functions, their characterization and the intersections with other classes of fuzzy implication functions.Publication Open Access Pre-aggregation functions: construction and an application(IEEE, 2015) Lucca, Giancarlo; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Mesiar, Radko; Kolesárová, Anna; Bustince Sola, Humberto; Automática y Computación; Automatika eta KonputazioaIn this work we introduce the notion of preaggregation function. Such a function satisfies the same boundary conditions as an aggregation function, but, instead of requiring monotonicity, only monotonicity along some fixed direction (directional monotonicity) is required. We present some examples of such functions. We propose three different methods to build pre-aggregation functions. We experimentally show that in fuzzy rule-based classification systems, when we use one of these methods, namely, the one based on the use of the Choquet integral replacing the product by other aggregation functions, if we consider the minimum or the Hamacher product t-norms for such construction, we improve the results obtained when applying the fuzzy reasoning methods obtained using two classical averaging operators like the maximum and the Choquet integral.Publication Open Access T-overlap t-migrative functions: a generalization of migrativity in t-overlap functions(Universidad Distrital Francisco José de Caldas (Colombia), 2020) Zapata, Hugo; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEste artículo introduce una generalización de funciones migrativas por extensión de la condición de la operación producto aplicada en las variables. Más específicamente, en lugar de exigir multiplicar la variable x por un número real alfa; en este trabajo se trabaja este número alfa con las variables de acuerdo a una t-norma. Se denomina a esta generalización función t-migrativa con respecto a tal tnorma. Luego se analizan las propiedades principales de funciones t-migrativas en funciones t-overlap y se introducen algunos métodos de construcción de este tipo de funciones.Publication Open Access Type-(2, k) overlap indices(IEEE, 2022) Roldán López de Hierro, Antonio Francisco; Roldán, Concepción; Tíscar, Miguel Ángel; Takáč, Zdenko; Santiago, Regivan; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Pereira Dimuro, Graçaliz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAutomatic image detection is one of the most im- portant areas in computing due to its potential application in numerous real-world scenarios. One important tool to deal with that is called overlap indices. They were introduced as a procedure to provide the maximum lack of knowledge when comparing two fuzzy objects. They have been successfully applied in the following fields: image processing, fuzzy rule-based systems, decision making and computational brain interfaces. This notion of overlap indices is also necessary for applications in which type-2 fuzzy sets are required. In this paper we introduce the notion of type-(2, k) overlap index (k 0, 1, 2) in the setting of type-2 fuzzy sets. We describe both the reasons that have led to this notion and the relationships that naturally arise among the algebraic underlying structures. Finally, we illustrate how type- (2, k) overlap indices can be employed in the setting of fuzzy rule-based systems when the involved objects are type-2 fuzzy sets.Publication Embargo A generalization of the Sugeno integral to aggregate interval-valued data: an application to brain computer interface and social network analysis(Elsevier, 2022) Fumanal Idocin, Javier; Takáč, Zdenko; Horanská, Lubomíra; Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Vidaurre Arbizu, Carmen; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Institute of Smart Cities - ISCIntervals are a popular way to represent the uncertainty related to data, in which we express the vagueness of each observation as the width of the interval. However, when using intervals for this purpose, we need to use the appropriate set of mathematical tools to work with. This can be problematic due to the scarcity and complexity of interval-valued functions in comparison with the numerical ones. In this work, we propose to extend a generalization of the Sugeno integral to work with interval-valued data. Then, we use this integral to aggregate interval-valued data in two different settings: first, we study the use of intervals in a brain-computer interface; secondly, we study how to construct interval-valued relationships in a social network, and how to aggregate their information. Our results show that interval-valued data can effectively model some of the uncertainty and coalitions of the data in both cases. For the case of brain-computer interface, we found that our results surpassed the results of other interval-valued functions.Publication Open Access Generalizing max pooling via (a, b)-grouping functions for convolutional neural networks(Elsevier, 2023) Rodríguez Martínez, Iosu; Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Herrera, Francisco; Takáč, Zdenko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaDue to their high adaptability to varied settings and effective optimization algorithm, Convolutional Neural Networks (CNNs) have set the state-of-the-art on image processing jobs for the previous decade. CNNs work in a sequential fashion, alternating between extracting significant features from an input image and aggregating these features locally through ‘‘pooling" functions, in order to produce a more compact representation. Functions like the arithmetic mean or, more typically, the maximum are commonly used to perform this downsampling operation. Despite the fact that many studies have been devoted to the development of alternative pooling algorithms, in practice, ‘‘max-pooling" still equals or exceeds most of these possibilities, and has become the standard for CNN construction. In this paper we focus on the properties that make the maximum such an efficient solution in the context of CNN feature downsampling and propose its replacement by grouping functions, a family of functions that share those desirable properties. In order to adapt these functions to the context of CNNs, we present (𝑎��, 𝑏��)- grouping functions, an extension of grouping functions to work with real valued data. We present different construction methods for (𝑎, 𝑏)-grouping functions, and demonstrate their empirical applicability for replacing max-pooling by using them to replace the pooling function of many well-known CNN architectures, finding promising results.Publication Open Access Applying d-XChoquet integrals in classification problems(IEEE, 2022) Wieczynski, Jonata; Lucca, Giancarlo; Borges, Eduardo N.; Emmendorfer, Leonardo R.; Ferrero Jaurrieta, Mikel; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaSeveral generalizations of the Choquet integral have been applied in the Fuzzy Reasoning Method (FRM) of Fuzzy Rule-Based Classification Systems (FRBCS's) to improve its performance. Additionally, to achieve that goal, researchers have searched for new ways to provide more flexibility to those generalizations, by restricting the requirements of the functions being used in their constructions and relaxing the monotonicity of the integral. This is the case of CT-integrals, CC-integrals, CF-integrals, CF1F2-integrals and dCF-integrals, which obtained good performance in classification algorithms, more specifically, in the fuzzy association rule-based classification method for high-dimensional problems (FARC-HD). Thereafter, with the introduction of Choquet integrals based on restricted dissimilarity functions (RDFs) in place of the standard difference, a new generalization was made possible: the d-XChoquet (d-XC) integrals, which are ordered directional increasing functions and, depending on the adopted RDF, may also be a pre-aggregation function. Those integrals were applied in multi-criteria decision making problems and also in a motor-imagery brain computer interface framework. In the present paper, we introduce a new FRM based on the d-XC integral family, analyzing its performance by applying it to 33 different datasets from the literature.Publication Open Access Multimodal fuzzy fusion for enhancing the motor-imagery-based brain computer interface(IEEE, 2019) Ko, Li-Wei; Lu, Yi-Chen; Bustince Sola, Humberto; Chang, Yu-Cheng; Chang, Yang; Fernández Fernández, Francisco Javier; Wang, Yu-Kai; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Lin, Chin-Teng; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasBrain–computer interface technologies, such as steady-state visually evoked potential, P300, and motor imagery are methods of communication between the human brain and the external devices. Motor imagery–based brain–computer interfaces are popular because they avoid unnecessary external stimulus. Although feature extraction methods have been illustrated in several machine intelligent systems in motor imagery-based brain–computer interface studies, the performance remains unsatisfactory. There is increasing interest in the use of the fuzzy integrals, the Choquet and Sugeno integrals, that are appropriate for use in applications in which fusion of data must consider possible data interactions. To enhance the classification accuracy of brain-computer interfaces, we adopted fuzzy integrals, after employing the classification method of traditional brain–computer interfaces, to consider possible links between the data. Subsequently, we proposed a novel classification framework called the multimodal fuzzy fusion-based brain-computer interface system. Ten volunteers performed a motor imagery-based brain-computer interface experiment, and we acquired electroencephalography signals simultaneously. The multimodal fuzzy fusion-based brain-computer interface system enhanced performance compared with traditional brain–computer interface systems. Furthermore, when using the motor imagery-relevant electroencephalography frequency alpha and beta bands for the input features, the system achieved the highest accuracy, up to 78.81% and 78.45% with the Choquet and Sugeno integrals, respectively. Herein, we present a novel concept for enhancing brain–computer interface systems that adopts fuzzy integrals, especially in the fusion for classifying brain–computer interface commands.Publication Open Access N-dimensional admissibly ordered interval-valued overlap functions and its influence in interval-valued fuzzy rule-based classification systems(IEEE, 2021) Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasOverlap functions are a type of aggregation functions that are not required to be associative, generally used to indicate the overlapping degree between two values. They have been successfully used as a conjunction operator in several practical problems, such as fuzzy rulebased classification systems (FRBCSs) and image processing. Some extensions of overlap functions were recently proposed, such as general overlap functions and, in the interval-valued context, n-dimensional interval-valued overlap functions. The latter allow them to be applied in n-dimensional problems with interval-valued inputs, like interval-valued classification problems, where one can apply interval-valued FRBCSs (IV-FRBCSs). In this case, the choice of an appropriate total order for intervals, like an admissible order, can play an important role. However, neither the relationship between the interval order and the n-dimensional interval-valued overlap function (which may or may not be increasing for that order) nor the impact of this relationship in the classification process have been studied in the literature. Moreover, there is not a clear preferred n-dimensional interval-valued overlap function to be applied in an IV-FRBCS. Hence, in this paper we: (i) present some new results on admissible orders, which allow us to introduce the concept of n-dimensional admissibly ordered interval-valued overlap functions, that is, n-dimensional interval-valued overlap functions that are increasing with respect to an admissible order; (ii) develop a width-preserving construction method for this kind of function, derived from an admissible order and an n-dimensional overlap function, discussing some of its features; (iii) analyze the behaviour of several combinations of admissible orders and n-dimensional (admissibly ordered) interval-valued overlap functions when applied in IV-FRBCSs. All in all, the contribution of this paper resides in pointing out the effect of admissible orders and n-dimensional admissibly ordered interval-valued overlap functions, both from a theoretical and applied points of view, the latter when considering classification problems.Publication Open Access Funções de agregação baseadas em integral de Choquet aplicadas em redimensionalização de imagens(Universidade Passo Fundo, 2019) Bueno, Jéssica C. S.; Dias, Camila A.; Pereira Dimuro, Graçaliz; Borges, Eduardo N.; Botelho, Silvia S. C.; Mattos, Viviane L. D. de; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThe increasing data volume, coupled with the high complexity of these data, has generated the need to develop increasingly efficient knowledge extraction techniques, both in computational cost and precision. Most of the problems that are addressed by these techniques have complex information to be identified. For this, machine learning methods are used, where these methods use a variety of functions inside the different steps that are employed in their architectures. One of these consists in the use of aggregation functions to resize images. In this context, a study of aggregation functions based on the Choquet integral is presented, where the main feature of Choquet integral, in comparison with other aggregation functions, resides in the fact that it considers, through the fuzzy measure, the interaction between the elements to be aggregated. Thus, an evaluation study of the performance of the standard Choquet integral functions is presented (Choquet integral based on Copula in relation to the maximum and average functions) looking for results that may be better than the usual applied aggregation functions. The results of such comparisons are promising when evaluated through measures of image quality.